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Abstract
We investigate the theory of skew (formal) power series introduced by
Droste, Kuske [4, 5], if the basic semiring is a Conway semiring. This yields
Kleene Theorems for skew power series, whose supports contain finite and
infinite words. We then develop a theory of convergence in semirings of
skew power series based on the discrete convergence. As an application
this yields a Kleene Theorem proved already by Droste, Kuske [4].

1 Introduction and preliminaries

The purpose of our paper is to investigate the skew formal power series intro-
duced by Droste, Kuske [4, 5]. These skew formal power series are a clever
generalization of the ordinary power series and are defined as follows.

Let A be a semiring and ¢ : A — A be an endomorphism of this semiring.
Then Droste, Kuske [4] define the p-skew product r ®, s of two power series
r,s € A¥, ¥ an alphabet, by

(r oy s,w) = 3 (ru)pl (s,0)

Uv=w

for all w € ¥*. They denote the structure (A¥", +,®,,0,1) by A,(X*)) and
prove the following result.

Theorem 1.1 (Droste, Kuske [4]) The structure A, (X*)) is a semiring.

They call A, {(¥*)) the semiring of skew (formal) power series (over ¥*).

In the sequel, we often denote ©,, simply by - or concatenation and A, ¢ and
3’ denote a semiring, an endomorphism ¢ : A — A and an alphabet, respectively.

The paper consists of this and four more sections. In this section we give a
survey on the results achieved by this paper and then define the necessary alge-
braic structures: starsemirings, Conway semirings, semimodules, starsemiring-
omegasemimodule pairs, Conway semiring-semimodule pairs, complete semiring-
semimodule pairs and quemirings. These algebraic structures, due to Elgot [7],
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Bloom, Esik [2] and Esik, Kuich [8] give an algebraic basis for the theory of
power series, whose supports contain finite and infinite words.

In Section 2 we prove that the semiring of skew power series over a Conway
semiring is again a Conway semiring. Moreover, we prove two isomorphisms of
certain semirings defined in connection with Conway semirings.

In Section 3, the results of Section 2 are applied to finite automata. A Kleene
Theorem over quemirings defined by skew power series over Conway semirings
and the usual Kleene Theorem over Conway semirings are shown.

In Section 4, we consider a semiring-semimodule pair defined by skew power
series and prove that under certain conditions this pair is complete. This gives
rise to another Kleene Theorem that is then applied to a tropical semiring and
yields a result already achieved by Droste, Kuske [4].

In the last section we develop a theory of convergence in semirings of skew
power series based on the discrete convergence. We show that important equa-
tions, which hold in Conway semirings, are valid under certain conditions also
in semirings of skew power series over an arbitrary semiring. As an application
this yields then another Kleene Theorem proved already by Droste, Kuske [4].

We assume that the reader of this paper is familiar with the theory of semi-
rings as given in Sections 1-4 of Kuich, Salomaa [13]. Familiarity with Esik,
Kuich [8, 9, 10] is desired.

Recall that a starsemiring is a semiring A equipped with a star operation
*: A — A. The Conway identities are the sum-star equation and the product-
star equation

(@+b)* = (a"b)*a"
(ab)* = 1+ a(ba)"d.

A Conway semiring is a starsemiring satisfying the Conway equations. Note
that any Conway semiring satisfies the star fized point equations

ac*+1 = a*
ata+1 = a,
as well as the equations
a(ba)* = (ab)*a
(a+b)* = a*(ba"™)".

Suppose that A is a semiring and V' is a commutative monoid written addi-
tively. We call V' a (left) A-semimodule if V is equipped with a (left) action

AxV — V

(s,v) — sv

subject to the following rules:



(s+s)w = sv+sv

s(v+v) = sv+sv
lv = v
Ov = 0
sO = 0,

for all s,s" € A and v,v" € V. When V is an A-semimodule, we call (4,V) a
semiring-semimodule pair.

Suppose that (A4,V) is a semiring-semimodule pair such that A is a star-
semiring and A and V are equipped with an omega operation ¥ : A — V. Then
we call (A, V) a starsemiring-omegasemimodule pair. Following Bloom, Esik 2],
we call a starsemiring-omegasemimodule pair (A4,V) a Conway semiring-semi-
module pair if A is a Conway semiring and if the omega operation satisfies the
sum-omega equation and the product-omega equation:

(a+b)* = (a*b)*+ (a*b)*a”
(ab)* = a(ba)*,

for all a,b € A. It then follows that the omega fized-point equation holds, i.e.,

for all a € A.
Recall that a complete monoid is a commutative monoid (M, +,0) equipped
with all sums  ;_; m; such that

Y =0

i€f
E m = m
je{1}
E m; = M1+ mo
i€{1,2}
D dmi = Y m
jeJ i€l i€Ujesl;

where in the last equation it is assumed that the sets I; are pairwise disjoint.
A complete semiring is a semiring A which is also a complete monoid satisfying

the distributive laws
S(Z s;)) = Z 884

iel i€l
( g 8i)s = g 8;8,
i€l iel

for all s € A and for all families s;, @ € I over A. Esik, Kuich [8] define
a complete semiring-semimodule pair to be a semiring-semimodule pair (A4, V)



such that A is a complete semiring, V' is a complete monoid with

S(Z v;) = sti

icl iel
( E s = g 80,
iel iel

for all s € A, v € V, and for all families s;, i € I over A and v;, i € I over V.
Moreover, it is required that an infinite product operation

(s1,82,...) — Hs]-

jz1

is given mapping infinite sequences over A to V subject to the following three

conditions:
Hsi = H(Sni—1+1 : snz)
i>1 i>1
i>1 i>1
H Z Si] = Z Hsij>
j>1ijel; (i1,in,..)EIy x I3 x ... j>1
where in the first equation 0 = ng < ny; < ny < ... and I, Io,... are arbitrary

index sets. Suppose that (A, V) is complete. Then we define

5* — E Sl
i>0

Y = ]__[s7

i>1

for all s € A. This turns (A, V) into a starsemiring-omegasemimodule pair. By
]:ilsik7 Kuich [8], each complete semiring-semimodule pair is a Conway semiring-
semimodule pair. Observe that, if (A4,V) is a complete semiring-semimodule
pair, then 0¥ = 0.

A star-omega semiring is a semiring A equipped with unary operations * and
“: A — A. A star-omega semiring A is called complete if (A, A) is a complete
semiring-semimodule pair, i. e., if A is complete and is equipped with an infinite
product operation that satisfies the three conditions stated above.

Consider a starsemiring-omegasemimodule pair (A,V). Then, following
Conway [3], we define, for all n > 0, the operation * : A™*™ — A"*" by
the following inductive definition. When n = 0, M* is the unique 0 x 0-matrix,
and when n = 1, so that M = (a), for some a in A, M* = (a*). Assuming that
n > 1, let us write M as

7) (1)

=
I
7N\
o
SH



where ais 1 x 1 and dis (n — 1) x (n — 1). We define

v (20)

where a = (a + bd*c)*, 8 = a*bd, v = d*ca, 6 = (d + ca*b)*.

Following Bloom, Esik [2], we define a matrix operation @ : A™"*™ — y7x1
on a starsemiring-omegasemimodule pair (A,V") as follows. When n = 0, M¥
is the unique element of V°, and when n = 1, so that M = (a), for some a € A,
M*“ = (a¥). Assume now that n > 1 and write M as in (1). Then

ue - < (a + bd*c)* + (a + bd*c)*bd¥ > (3)

- (d+ ca*b)® + (d + ca*b)*ca” ]~

Following Esik, Kuich [10], we define matrix operations “* : Am*m — ynx1,

0 < k < n, as follows. Assume that M € A™*" is decomposed into blocks

a,b,c,d as in (1), but with a of dimension k& x k and d of dimension (n — k) x
(n — k). Then

e = (i) ®

Observe that M“° =0 and M“~ = M“.
Suppose that (A, V) is a semiring-semimodule pair and consider T'= A x V.
Define on T the operations

(s,u)-(s,v) = (ss',u+sv)
(s,u) + (s',v) = (s+5,u+w)

and constants 0 = (0,0) and 1 = (1,0). Equipped with these operations and
constants, T satisfies the equations

(x+y)+z = x+(y+2) (5)
r+y = y+x (6)
rx+0 = =z (7)

(z-y)z = z-(y-2) (8)
r-1 = «x 9)
loz = =z (10)

(@+y)z = (@-2)+(y-2) (11)

0-z = 0. (12)

Elgot[7] also defined the unary operation § on T: (s,u)] = (s,0). Thus, §
selects the “first component” of the pair (s,u), while multiplication with 0 on
the right selects the “second component”, for (s,u) -0 = (0,u), for all u € V.
The new operation satisfies:

- (y+z2) = (29-y)+ (29 2) (13)
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r = x99+ (z-0) (14)
290 = 0 (15)
(+y) = 29+y9 (16)
(z-y)) = 2999 (17)

Note that when V' is idempotent, also
x-(y+z) = z-y+zx-z

holds.

Elgot[7] defined a quemiring to be an algebraic structure T' equipped with the
above operations -, +, § and constants 0, 1 satisfying the equations (5)—(12) and
(13)—(17). A morphism of quemirings is a function preserving the operations and
constants. It follows from the axioms that x99 = =¥, for all x in a quemiring
T. Moreover, z§ =z iff z- 0= 0.

When T is a quemiring, A = T = {29 | « € T} is easily seen to be a
semiring. Moreover, V =T0 = {z-0 | x € T'} contains 0 and is closed under +,
and, furthermore, sz € V for all s € A and x € V. Each x € T may be written
in a unique way as the sum of an element of 79 and a sum of an element of
T0 as z = x4 + = - 0. Sometimes, we will identify A x {0} with A and {0} x V
with V. It is shown in Elgot [7] that T is isomorphic to the quemiring A x V
determined by the semiring-semimodule pair (A, V).

Suppose now that (A, V) is a starsemiring-omegasemimodule pair. Then we
define on T'= A x V a generalized star operation:

(5,0)® = (s%,5Y+s") (18)

for all (s,v) € T. Note that the star and omega operations can be recovered
from the generalized star operation, since s* is the first component of (s,0)®
and s* is the second component. Thus:

(s,0) = (5,09
0,5°) = (s5,0)®-0.
Observe that, for (s,0) € A x {0}, (s,0)® = (s*,0) + (0, s*).

Suppose now that T is an (abstract) quemiring equipped with a generalized
star operation ®. As explained above, T' as a quemiring is isomorphic to the
quemiring A x V associated with the semiring-semimodule pair (A, V'), where
A =T9 and V = T0, an isomorphism being the map x — (29, z - 0). It is clear
that a generalized star operation ® : T — T is determined by a star operation
*: A — A and an omega operation ¥ : A — V by (18) iff

a9 = (a9)°9 (19)

2.0 = (2% -0+ 2%9.2-0 (20)

hold. Indeed, these conditions are clearly necessary. Conversely, if (19) and (20)
hold, then for any 9 € T we may define

@) = @N°Y (21)
(@) = (@9®-0. (22)
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It follows that (18) holds. The definition of star and omega was forced.

Let us call a quemiring equipped with a generalized star operation ® a gen-
eralized starquemiring. Morphisms of generalized starquemirings preserve the
quemiring structure and the ® operation.

2 Skew power series over Conway semirings

Let A be a starsemiring. Then, for r € A,((¥*)), we define r* € A,((¥*)), called
the star of r by

(r*,w) = (re)* Z (r,u)pl® (7 v),  w#e.

uv=w, uFe

The structure (A", +, Oy, *,0,1), again denoted by A, (3*)), is a Conway semi-
ring if A is a Conway semiring. Proofs of this and the following results can be
found in Kuich [12].

Theorem 2.1 If A is a Conway semiring, ¢ : A — A is an endomorphism and
Y is an alphabet then A, {(X*)) is again a Conway semiring.

Corollary 2.2 (Bloom, Esik [2]) If A is a Conway semiring and ¥ is an al-
phabet then A{X*)) is again a Conway semiring.

In the next corollary we consider AZ*"((X*)). Here ¢ : A"*"™ — A™*™ is the
pointwise extension of the endomorphism ¢ : A — A. Clearly, the extended ¢
is again an endomorphism.

Corollary 2.3 Let A be a Conway semiring, ¢ : A — A be an endomorphism,
¥ be an alphabet and n > 1. Then (A,(X*)" " and AL*" (X)) are again
Conway semirings.

Theorem 2.4 Let A be a Conway semiring, ¢ : A — A be an endomorphism, %
be an alphabet and n > 1. Then (A, (X*))™*™ and AZ*"(%*)) are isomorphic
starsemirings.

Corollary 2.5 Let A be a Conway semiring and ¥ be an alphabet. Then
(A{Z*M)™=™ and A™*™({(E*)) are isomorphic starsemirings.

Let ¢,¢" : A — A be endomorphisms. Then we define the mapping ¢% :
Ap(E7) — A ((X") by (px(r),w) = ¢'(r,w), 1 € Ay(E7)), for all w € I*.
Moreover, ¢ and ¢ are commuting if, for all a € A, p(¢'(a)) = ¢'(¢(a)).

Theorem 2.6 Let ¢,¢' : A — A be commuting endomorphisms. Then ¢f, :
AL (X*) — AL (X*)) is an endomorphism.

Corollary 2.7 Let ¢ : A — A be an endomorphism. Then s : Ay(3*)) —
A (E*) and o5, : A(X*)) — A{(X*)) are endomorphisms.
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Corollary 2.8 Let A be a Conway semiring, ¢ : A — A be an endomorphism,
and 31, % be alphabets. Then (Ay (X7)))es, (33)), (Ao (E1)(E5)),
(A(ZT))gs, (33)) and (A(ET))(X3)) are again Conway semirings.

Theorem 2.9 Let A be a Conway semiring, ¢, : A — A be commuting endo-
morphisms and Y1, %y be alphabets. Then (Ay(37))ys, (X3)) and
(Ap((33)) s, (7)) are isomorphic starsemirings.

Corollary 2.10 Let A be a Conway semiring, ¢ : A — A be an endomor-
phism and 1,32 be alphabets. Then (A (X7)ps, (33)), (AUET)) s, (X3)),
(AASINAEE) and (AN, and (Ap (50 s, (1), (Ax (S50 (D),
(A;(E;)})@Zz {(Z1) and (A{(ZIN){(XT) are isomorphic starsemirings, respecti-
vely.

3 Finite automata and Kleene Theorems over
Conway semiring-semimodule pairs

In this section we consider finite automata over semirings and quemirings and
prove some Kleene Theorems. Again, proofs of the following results can be
found in Kuich [12].

By (A,{(X¥)),+,0) we denote the set of skew power series >
(s,v) € A, with pointwise addition. We define a (left) action

VEXW (57 U)Ua

®p t Ap((E7) x Ap(Z¥) —  Ap(E)
(r,s) — r®4s
by
(r®es,v) = Z (r, u/)golw‘(s,u)7 veE XY,
WEL*, uEXY, wu=v

Theorem 3.1 Let A be a complete semiring, p : A — A be an endomorphism
of complete semirings and ¥ be an alphabet. Then A, (X)) is a (left) A, (X*))-
semimodule.

Throughout this section, A is a Conway semiring, such that (A, (X*)),
A {(X¢))) is a starsemiring-omegasemimodule pair (see Elgot [7], Esik, Kuich [8]).
Moreover, we assume 0¢ = 0. Furthermore, we use the notation A,(X Ue) =
{ac + > exam | a,a, € A}, Ap(E) = {D cx 2 | ax € A}, Ay(e) = {ace |
ac€ A}

A finite automaton over the semiring A, (3*))

A= (n,I,M,P)
is given by

(i) a finite set of states {1,...,n}, n > 1,

14



(ii) a transition matric M € (A,(XUeg))™*™,
(iii) an initial state vector I € (Ay(e))t*",
(iv) a final state vector P € (Ay(e))"* .

The behavior of A is a skew power series in A, ((3*)) and is defined by
||| = IM*P.

(See Conway [3], Bloom, Esik [2], Kuich, Salomaa [13].)
A finite automaton over the quemiring A,(X*)) x Ay (X))

A= (n,I,M,Pk)
is given by
(i) a finite automaton (n,I,M,P) over A,{(X*)),
(ii) a set of repeated states {1,...,k}, 0 <k <n.

The behavior of 2 is a pair of skew power series in A, (X*)) x A, (X)) and is
defined by
||| = IM*P + IM** .

(See Bloom, Esik [2], Esik, Kuich [10].)

Observe that, if A = (n,I, M, P) is a finite automaton over A, ((X*)) and
A" = (n,I,M,P,0) is a finite automaton over A, ((X*)) x A, ((X*)) without
repeated states, then ||| = ||]].

A finite automaton A = (n,I, M, P) over A,(X*)) or A" = (n,I,M, P, k)
over A, (X*)) x Ay ((X¢)) is called e-free if the entries of M are in A,(X).

By definition, AZ*(X*)) € A (X*)) (resp. w-Rat(A, (B U¢)) C AL (X)) x
A (X9)) is the smallest starsemiring (resp. generalized starquemiring) that
contains A, (X Ue).

Since A is a Conway semiring, we can specialize the Kleene Theorem (The-
orem 3.10) of Esik, Kuich [10].

Theorem 3.2 Let (A, ((X*), Ay,(X¥)) be a starsemiring-omegasemimodule
pair, where A is a Conway semiring and 0¥ = 0. Then the following state-
ments are equivalent for (r,s) € Ay (E*)) x A (X))

(1) (r,s) = |||, where A is a finite automaton over A,(3*)) x Ay (X)),
(it) (r,s) € w-Rat(A,(EUeg)),
(ii) 7€ AZH(E"), 8= D0 < jam UV with uj,v; € AZH(EY).

By Theorem 3.2 (iii) we can write w-Rat(A,(XUe)) as A2 (%)) x AH(E)),
where, by definition, AR (X)) = {30, <., wjv§ | uz,v; € AZH(ED}.

By definition, &-Rat(A,(X Ue)) C Ay (X") x Ay (X¢)) is the smallest
quemiring containing A, (X U €) such that, for ¢ € @-Rat(4,(X U ¢)), where
(¢9,¢) =0, ¢® is again in &-Rat(A, (X Ue)).
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Theorem 3.3 If (A, (X*), A, (3¥))) is a Conway semiring-semimodule pair,
where (ag)® = 0 for a € A, then the following statements are equivalent to the
statements of Theorem 3.2:

() (r,s) = ||A||, where A is an e-free finite automaton over A,((X*)) X
Ap(B).
(v) (r,s) € w-Rat(Ay (X Ue)),

(vi) 7€ AZUE N, 8 = 3 1cjcm vy with uj,v; € AZH(EY)), where (uj,e) =
0, (vj,€) =0.

Moreover, Conway [3], Bloom, Esik [2], or Aleshnikov, Boltnev, Esik, Is-
hanov, Kuich, Malachowskij [1] imply at once the following generalization of
the Kleene-Schiitzenberger Theorem.

Theorem 3.4 Let A be a Conway semiring. Then the following statements are
equivalent for r € A, (%) :

(1) = |||, where A is a finite automaton over A, {(X*)),
(i5) v = ||2A]|, where A is an e-free finite automaton over A,{(X*),
(iii) r € Ar;t {Z*).

This theorem can also be seen to be a specialization of Theorem 3.2 for finite
automata over A, (X)) x A,{(X*)) with empty repeated states set.

4 Cycle-free finite automata and a Kleene Theo-
rem over complete semiring-semimodule pairs

We first prove that, for a complete star-omega semiring A and an endomorphism
¢ : A — A compatible with infinite sums and products, (A, (X*)), A, (X)) is
a complete semiring-semimodule pair.

Then, for a subsemiring A’ of A, such that, for a cycle-free ¢ € A'(¥ U ¢e),
q” is in AL ((¥X*)), we consider cycle-free finite automata over the quemiring
AL (X)) x AL((X")) and prove a Kleene Theorem.

We then show that the star-omega semiring R is complete. This implies
then the Kleene Theorem of Droste, Kuske [4].

Assume that A is a complete star-omega semiring, i. e., there exists an infinite
product subject to three conditions. Then we define an infinite product for skew
power series in the following way:

¥ w * .
(rire,- )= [ € A=), ry e A(E7), 5 >1,
jz1
where, for all v € X¢,

(I = > L1050

7>1 V=v1V2... j>1
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Theorem 4.1 Let A be a complete star-omega semiring, ¢ : A — A be an
endomorphism compatible with infinite sums and products and % be an alphabet.
Then (Ay (X)), Ax(39) is a complete semiring-semimodule pair satisfying
(ag)” =0 fora € A.

Proof. We only prove the equation

17> = > 17  redqs). izt

=1 iel; (i1yiz,... ) €L xTax... 5>1

We obtain, for v € 3¢,

(Hf21(zijejj i), v) =

Z’U:’Ulﬂg... HjZl (pllulmvjill(ZijGIj (Tj7 v])) =

Zv:vlvz.“ Z(il,iz,.“)eh xIyx... szl W‘Ulmvjil‘ (Tj’ vj) =

%(il,’ig,.”)Gll XIgX...(%[’l:o—Ulvg... %_[j>1 @‘1)1-“113.71‘(,’"]‘71}]‘) =
(i1,iz,.. )€l xIax... \LLj>1 75, V) =

(Z(il,iQ,...)efl xXIzX... Hle rj,'U) .

Consider now (Hf>1 ag,v) =3 v Iis1 plvr-vi-il(ae, v;) for a € A, v €
¥¥. Then infinitely many of the v; are unequal to e. Hence, (ag,v;) = 0 for
infinitely many j and ([[7,, ae,v) = 0. 0O

In the sequel, we often denote ®, simply by - or concatenation.

Corollary 4.2 Let A be a complete star-omega semiring, o : A — A be an
endomorphism compatible with infinite sums and products and % be an alpha-
bet. Then (A, (X*), A, {(X“)) is a Conway semiring-semimodule pair satisfying
(ag)¥ =0 fora € A.

Proof. By Theorem 3.1 of Esik, Kuich [8]. 0

Corollary 4.3 Let A be a complete star-omega semiring, ¢ : A — A be an
endomorphism compatible with infinite sums and products and ¥ be an alpha-
bet. Then, for n > 1, ((A,{Z*))™*™, (A(E“))™) is a complete semiring-
semimodule pair satisfying (Me)* =0 for M € A™*™,

Proof. By Esik, Kuich [8] and an easy proof by induction on n. 0

Corollary 4.4 If A is a complete star-omega semiring, ¢ : A — A be an
endomorphism compatible with infinite sums and products and ¥ be an alphabet
then the following statements are equivalent for (r,s) € A, (E*) x Ag(E“):

(i) (r,s) = ||2A||, where A is a finite automaton over A, (E*)) x A, (X)),
(i1) (r,s) € w-Rat(A,(EU¢)),

(ii) 7€ AZUE"), 8= D0 < jam UV with uj,v; € AZH(EY).
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(iv) (r, 8() =>> |||, where A is an e-free finite automaton over A,(X*)) x
A (=Y.

(v) (r,s) € w-Rat(Ay (X Ug)),

(vi) r € Afoat<<2*>>, s = Zlgjgm u;vy with uj,vj € A‘;t«E*» where (uj,e) =
0, (vj,e) =0.

Proof. Since (A, {(X*)), Ax(3¢))) is a complete semiring-semimodule pair, it is
also a Conway semiring-semimodule pair by Corollary 4.2. Moreover, (ag)* = 0
for a € A. Hence, the corollary is implied by Theorems 3.2 and 3.3. 0O

A semiring A is called zerosumfree if, for all a1,as € A, a3 + as = 0 implies
a1 =0 and ao = 0. An element a € A is called nilpotent if there exists a k > 1
such that a* = 0. A semiring A is called positive if A is zerosumfree and if, for
all aj,a2 € A, whenever s; - s = 0 then s; = 0 or s; = 0 (see Eilenberg [6]).
An element a € A is called nilpotent if there exists a k > 1 such that a* = 0.
The following lemma is from Esik, Kuich [9].

Lemma 4.5 (i) Let A be a complete positive semiring. Assume that

M= ( (z Z > e A" where a € AV, d e ADx(n=1)

If M is nilpotent then a + bd*c = 0.
(ii) Let A be a zerosumfree semiring. Assume that

M= < Ccl Z > € A" wherea € A™*™  de A™*"™ ni+ny=mn.

If M is nilpotent then a, d, bc and cb are nilpotent.

A skew power series 7 € A, ((X*)) is called cycle-free if there exists a k >
1 such that (r,e)* = 0, i.e., if (r,e) is nilpotent. A finite automaton 2 =
(n,I,M,P) (resp. A= (n,I,M,P,k)) over A,(X*)) (resp. A,{(X*) x A, (X¥)))
is called cycle-free if M is cycle-free.

For the rest of this section, A is a complete star-omega semiring and ¢ :
A — A is an endomorphism compatible with infinite sums and products.

Theorem 4.6 Let A be a positive complete star-omega semiring, ¢ : A — A
be an endomorphism compatible with infinite sums and products and X be an
alphabet. Let A’ be a subsemiring of A such that, for a cycle-free ¢ € A,(XU¢),
q* € AL(X"). Assume that M € (AL(Y Ue))" " is cycle-free. Then M® €

(A (Z))™

Proof. The proof is by induction on n. The case n = 1 is clear. Assume now that
n > 1 and partition M as usual into blocks a, b, ¢, d, where a € A;(Z Ue) and

de (A;,(EUED(”_DX("_D. Consider (M“); = (a+bd*c)¥ + (a+bd*c)*bd”. By
Lemma 4.5, (a + bd*c,e) = 0 and d is cycle-free. Hence, (a + bd*c)® € AL {(X*))
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and d* € (AL (X*))"~'. Moreover, (a + bd*c)* € A,((X*)). This implies that
(M®); € AL(¥*)). By application of the omega-permutation-equation (see

Bloom, Esik [2]) we obtain that M* € (AL (=)™ 0

By definition, Rat(A, (X Ue)) € A, ((X*)) is the smallest semiring containing
A, (¥ Ue) such that, for ¢ € Rat(A,(X Ue)) where (¢,e) = 0, ¢* is again in
Rat(A, (X Ue)).

Theorem 4.7 Let A be a positive complete star-omega semiring, ¢ : A — A
be an endomorphism compatible with infinite sums and products and X be an
alphabet. Let A’ be a subsemiring of A such that, for a cycle-free q € A;(EU&t),
q“ € AL(X*). Assume that M € (AL (X Ue))"*" is cycle-free. Then, for
1<i<n,1<j5<m, there exist u;;,v;; € Rat(A,(E Ue)), where (u;5,€) =0,
(vij,€) =0, such that (M®); = 32 << Wij V55

Proof. The proof is by induction on n. The case n = 1 is clear. Assume now
that n > 1 and partition M as usual into blocks a,b, ¢, d, where a € A (¥ Ue¢)
and d € (AL (S Ue))n~Dx(=1 The entries of a + bd*c, (a + bd*c)*b and d
are in Rat(A,(X Ue)). Hence, by Lemma 4.5 , there exist t € Rat(Ay(X Ue)),
u € (Rat(Ay, (X Ue)))* (=D where (t,¢) = 0, such that (M%); = ¥ + ud® =
t + u(d¥)” = t¥ + ud®(d*)« for all k > 1. Here the second equality follows
by Corollaries 4.3 and 4.2. Since d is cycle-free there exists a k& > 1 such
that (d*,e) = 0. Let now (ud®); = u;, (d*)¥ = v;. By induction hypothesis,
Vi = Y icjem Wiv's;, where (ujj,e) = 0, (vj;,€) = 0. Then (M%), = ¥ +
Zlgign Zlgjgm uiu,’ijv’fj, where (t,¢) = 0, (u;,e) =0, (u;»j,a) =0, (vgj,a) =0.
The omega-permutation-equation proves the theorem for (M<);, 2 <i <n.

Theorem 4.8 Let A be a complete semiring and A’ be a subsemiring of A. Let
2 = (n,1,M,P) be a cycle-free finite automaton over the semiring Al (X*)).
Then ||| € A;((E*)).

Proof. Since 2 is cycle-free, (M,e)* € A™*". Let My = Y
since ((M,e)*My,e) =0,

sex (M, z)z. Then,

M = ((M,e)"My)" (M, )" € (AL (X))

(Here we have applied already the forthcoming Theorem 5.7.) Hence, ||2|| €
A5, O

Theorem 4.9 Let A be a positive complete star-omega semiring, ¢ : A — A
be an endomorphism compatible with infinite sums and products and ¥ be an
alphabet. Let A’ be a subsemiring of A such that, for a cycle-free g € A,(XU¢),
q“ € AL((X"). Let A= (n,I,M, P k) be a cycle-free finite automaton over the
quemiring AL (X*)) x AL(X“). Then [|A]| € AL (X)) x AL{(X“)).

Proof. By the proof of Theorem 4.8, M* € (A, ((X")))"*". By Theorem 4.6,
M € (AL(Z¥)". Hence, |[A]| € AL(X7)) x AL (X)) O
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Theorem 4.10 Let A be a positive complete star-omega semiring, ¢ : A — A
be an endomorphism compatible with infinite sums and products and X be an
alphabet. Let A’ be a subsemiring of A such that, for a cycle-free g € A,(XU¢),
q* € AL((X“)). Then the behaviors of cycle-free finite automata over A, ((¥*)) x

{
©
AL (X)) form a subquemiring T, of AL (X)) x A, ((E‘”>} containing A (S Ue),

©
such that for r € T, where (r9,e) =0, r® is again in T,.

Proof. Inspection of the proofs of Theorems 3.3-3.8 of Esik, Kuich [10] shows
that all constructed finite automata are again cycle-free. This is seen by the
proofs of Lemmas 3.15-3.17 of Esik, Kuich [9]. Hence, Theorem 4.9 proves our
theorem. O

Theorem 4.11 Let A be a positive complete star-omega semiring, ¢ : A — A
be an endomorphism compatible with infinite sums and products and X be an
alphabet. Let A’ be a subsemiring of A such that, for a cycle-free q € AL, (¥ U
€), ¢¥ € AL(X¥)). Then the following statements are equivalent for (r,s) €
ALY x AL (5

(i) (r,s) = |||, where A is a cycle-free finite automaton over Al {(X*)) x
AL(E),

(ii) (r,s) € G-Rat(AL (S Ue)),

(i11) r € Rat(Ay (X Ue)) and s = D ;. wivy with u;,v; € Rat(A (X Ue))
and (u;,e) =0, (v;,e) = 0. o

Proof. (i) = (iii): By Theorems 4.7 and 4.8.

(iii) = (ii): Since r € Rat(A,(X Ue)) and s € 0-Rat(A (X Ue).0, we obtain
(r,8) € 0-Rat(AL (X Ue).

(ii) = (i): By Theorem 4.10. 0

We now want to prove the Kleene Theorem of Droste, Kuske [4]. We first

consider the complete semiring
R ={a>0]|acR}U{-00,00}, max,+,—00,0).

!/
; iel
are defined by [[;~; @i = >;~; a;. Here Y .., a; denotes sup{) ;. ai | n >
1}. We now show that this infinite product satisfies the three laws of a complete
star-omega semiring.

(i) Let a; > 0 and 0 = ng <ny <ng < ... and define b; = ay, ,41...an, =

i

> mi1+1<j<n, @, © = 1. We have to show that ngl a; = H221 b;. We obtain

/ /
Hi21 bi = 2121 bi = 2121 Zni,ﬁlgg‘gm a; = 2121 a; = Hizl Q-
(ii) Let a; > 0, ¢ > 1. Then we obtain a; + H;Zl air1 = ai + Zizl Giy1 =

2221 a; = H;21 ;.
/

ees . . !
/(111) Let a;; >0, zj/e I;,j > 1. Then Welhave t/o show that [ ], Zijelj ai;, =
Z(il,i27...)611><12><... szl ai;. We obtain sz1 Zz‘jelj Qi; = ZjZl sup{ai; | i;

Here infinite sums are defined by >_._, a; = sup{a; | ¢ € I} and infinite products

m
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I} =sup{d ;51 ai; | 5 € i} = sup{d 5, ai; | (i1,02,...) € i x b x ...} =
2(7‘17127 DEI xIaX... H]Zl a1,7

Hence, we have proved the next theorem.

Theorem 4.12 RS . is a complete star-omega semiring.

X

The only endomorphisms of RS are of the form ¢(a) = ¢ - a for some
g € R, ¢ > 0. (See Droste, Kuske [4], Lemma 5.1.) Denote (R, ),(X*)) by

max

Roax o (X)) and (RE,. ), (( “N by R, (E“) if ¢ is defined as above, and
observe that the multiplication +, in R, (X)) is defined by

(11 +¢ r2, w) = max{(ry, w1) + q"(ra, wo) | wiws = w},

ri,re € R (X*), w e X*.

max,q

Corollary 4.13 (Esik, Kuich [9]) (R, (X)), R, (X)) is a complete

max,q max,q
semiring-semimodule pair.

Let Rpnax be the following subsemiring of R
Rmax = ({a > 0] a € R} U{—00}, max, +, —00,0) .
Denote (Rmax)e ((X7) by Rmax,q(£7)) and (Rmax) o (5“)) by Rimax,q{(X*))-

Theorem 4.14 (Droste, Kuske [4]) The following statements are equivalent for
(7, 5) € Rinax,q () X Rinax,q (X)), 0 < ¢ < 1:

(1) (r,s) = |||, where A is a cycle-free finite automaton over Ruyax ¢ (X*)) X
Rinax,q (3))

(i1) (r,s) € O- R Rpax (X Ue)),

(111) € Rat(Rmax,q (XU e)) and s = max{u; +qv; | 1 < i < m} with u;,v; €
Rat(Rmax,q(X U e)) and (u;,e) = —o0, (v5,€) = —o0.

Proof. By Theorem 4.11. O

5 Skew power series over arbitrary semirings

We assume that the reader is familiar with the axiomatic theory of convergence
considered in Section 2 of Kuich, Salomaa [13]. We also use the notations and
isomorphisms used there.

In this section we define a convergence in the semiring A, ((3*)). This is done
mainly for the purpose to define the star of a cycle-free power series in A, (X*)).
If A is a starsemiring, these considerations on a convergence are not necessary.
Hence, we assume that A is not a starsemiring. (Or, if A is a starsemiring, we
do not consider explicitely the star operation in A.) We then show variants of
the sum-star-equation, the product-star-equation and the matrix-star-equation.
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Eventually, we prove a Kleene Theorem due to Droste, Kuske [4] by application
of these equations.

By (A,(Z*))Y we denote the set of sequences in A,(X*)). We denote
by o and 7 the sequences defined by o(n) = 0 and n(n) = ¢, n > 0.
a1, € (A ((S*N)N we define a1 + a2 and a; ©y ag in (Ay,(S*NMN by (a1 +
az2)(n) = ai(n) + ae(n) and (a1 Oy a2)(n) = ai1(n) ©p as(n), n > 0. For
a € (AL(ZMN, r € A (=), we define r ®, o and o Oy, 7 in (A, (Z*))N by
(r @y a)(n) =17 Op a(n) and (o ©, r)(n) = a(n) ®, r, n > 0. Observe that
(Ao (=N, +,®yp, 0,n) is a semiring. In the sequel, we often denote ®, by -
or by concatenation.

Consider a € (A, (E*))N and r € A,{(E*)). Then o, € (A, {(E*))N denotes
the sequence defined by a,.(0) = 7, a,(n + 1) = a(n), n > 0. Moreover, for
a sequence 3 € AN, ¢(3) is the sequence in A defined by ¢(8)(n) = ¢(3(n)),
n > 0.

By D, ((X*)) C (A, (E*))N we denote the set of sequences o : A, (X*)) — N
such that there exists an ng, > 0 with (a(new + k), w) = (a(new), w) for all
k>0 and w € ¥*. Hence, a € D, ((X*)) iff (o, w) € Dq for all w € ¥*. (Here
Dy denotes the set of convergent sequences of the discrete convergence in A.)

We now will show that D ((¥*)) is a set of convergent sequences. Hence, we
have to prove that the following conditions are satisfied:

(D1) n € Dy (=),

(D2) (i) if aq, a9 € Dy ((X*)) then a1 + as € D, (X)),

(i) if o € D, (X)) and 7 € AL (X*)) then r Oy o, Oy 1 € Dy (X)),

(D3) if @ € D, (%)) and r € A, (X*)) then o, € Dy, (X*)).

Lemma 5.1 D,((X*)) is a set of convergent sequences in (A, {(E*))N.

Proof. We only prove (D2)(ii), i. e., we prove that for o« € D, ((¥*)), r € A, (X*)),
the sequences r®,a and a@,r are again in D, ((X*)). We obtain, for all w € ¥*,

(rogaw) = Y (rnw)e™ (@)

wlw2=w

and
(@ @y rw) = Z (ar, w1) M (7, ws) .

w1 we2=w

Since ¢!"tl(a, w2) and (o, wy) are in Dy, these sequences r ©®, a and a @, r are
in D, (7).

The rest of the proof is analogous to the proof of Lemma 2.10 of Kuich,
Salomaa [13]. 0

We now will show that the mapping lim : D,(¥3*)) — A, (X*)) defined
by lima = 37 s limg(o, w)w, o € D, ((X*)), is a limit function on D ((¥*)).
Here limg : Dy — A is the limit function of the discrete convergence in A defined
by limg 8 = B(ng) if § € Dy with B(ng + k) = B(ng) for all £ > 0. Hence, we
have to prove that the following conditions are satisfied:

(liml) limn = 1,

(lim2) (i) if a1, a2 € Dy ((3*)) then lim(a; + a2) = lim a; + lim as,
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(i) if o € D, (X*)) and r € A, (X)) then lim(ra) = rlim o
and lim(ar) = (lima)r,
(lim3) if a € Dy ((X*)) and r € A, ((X*)) then lim o, = lim o

Theorem 5.2 The mapping lim : D (3*)) — A, (X*)) defined by lima =
Y owes limg(a, w)w, a € D, (X%), is a limit function on Dy, {(X7)).

Proof. We only prove (lim2)(ii). Let r € A,(X*)), o € D, ((X*)) and w € X*.
Then

(limra, w) = limg(ro, w) = 1ma(3 -, 4, —w (7 wy) el (e, wy)) =

> s w1 w1) lima @I, wa) = 33, 1,2, (ry w1l (lima (o, ws)) =
(r,wy) et (lim o, wy) = (rlim a, w)

wlwWw2=w
and
(lim ar, w) = limg(ar, w) = limd(zwlwzzw(a,wl)w‘wl‘(r, wg)) =
Zunwz:w 1imd(a> wl)(plwll(r7 w2) =
> s (i v, w1 )l (r, w3) = ((lim a)r, w) .
We now obtain
lim(ra) = Z limg(ra, w)w = Z (rlimea,w)w = rlima
wex* wex*
and
lim(ar) = Z limg(ar, w)w = Z ((lim @), w)w = (lima)r.
wex* wex*
The rest of the proof is analogous to the proof of Lemma 2.11 of Kuich, Salo-
maa [13]. 0

We make now the following conventions throughout this paper: In A we
use always the discrete convergence; in A, ((X*)) we use always the convergence
defined in Theorem 5.2; in A™*™ we use always the discrete convergence; and
in AZ*"™((¥*)) (and isomorphically in (A, ((¥*)))"*") we use always the conver-
gence defined in Theorem 5.2.

If, for r € A,((¥X*)) the sequence (Z?:o rd) is in D, ((X*)) then we write
limy,— oo Z?:o ri = r* and call r* the star of r.

Clearly, a skew power series r € A, (X*)) is cycle-free iff lim,, o ((1,€),e)" =
0. A proof analogous to the proof of Theorem 3.8 of Kuich, Salomaa [13] yields
the next theorem.

Theorem 5.3 Ifr € A,(X*)) is cycle-free then there exists a k > 1 such that
(T(n+1)’f+j7w) =0
for allw € ¥*, |w| =n, and j > 0. Furthermore, r* exists and

(n+1)k—1
(r*,w) = (rj,w), we X,
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Corollary 5.4 Ifr € A,(X*)) is cycle-free then lim, .o ™" =0 and r* exists.
Moreover,
r"=c+rrf=ec+r'r.

Proof. The second statement follows from Kuich, Salomaa [13], Theorem 2.3.

Theorem 5.5 Letr,s € A,(X*)). Thenrs is cycle-free iff sr is cycle-free and,
in this case,
s(rs)* = (sr)*s.

Proof. If rs is cycle-free there exists a k > 1 such that ((rs)¥,e) = 0. This
implies that ((sr)**1,e) = (s(rs)*r,e) = 0. Hence, rs is cycle-free iff sr is
cycle-free. Now apply Theorem 2.7 of Kuich, Salomaa [13]. 0

Recall that, in case of a Conway semiring A, for r € A, {(X*)), r* is defined

by a formula given in Section 1. In case of a cycle-free skew power series we can
prove the validity of that formula in arbitrary semirings.

Theorem 5.6 Ifr € A,(X*)) is cycle-free then
(re) = (r,e)"

and, for all w € ¥*, w # ¢,

(rrw)= > (o)), v).

uv=w, uFe

Proof. Analogous to the proofs of Lemmas 3.3, 3.4 and Theorem 3.5 of Kuich,
Salomaa [13].

The next theorem shows that the sum-star-equation and the product-star-
equation are valid for certain skew power series.

Theorem 5.7 Letr,s € A, (X*). Ifr is cycle-free and (s,e) =0, or (r,e) =0
and s is cycle-free then
(r4s)" = (r*s)*r*.

If rs or sr is cycle-free then
(rs)* =e+r(sr)*s.

Proof. If r is cycle-free (resp. (r,e) = 0) and (s,e) = 0 (resp. s is cycle-free)
then r + s is cycle-free. Hence, lim, . (r + s)™ = 0 and (r + s)* exists by
Corollary 5.4. Moreover, (r*s,e) = 0 (resp. (r*s,e) = (s,¢)). Hence, r*s is
cycle-free and (r*s)* exists by Theorem 5.3. Eventually, r* exists, again by
Theorem 5.3. Now, Theorems 2.8 and 2.7 of Kuich, Salomaa [13] prove the first
statement of our theorem.

By Corollary 5.5, s(rs)* = (sr)*s. Hence, € 4+ rs(rs)* = ¢ + r(sr)*s. By
Corollary 5.4, we obtain the equality (rs)* = e + rs(rs)*. 0
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Corollary 5.8 Let r € A, ((X*)) be cycle-free and ro = (r,€)e,
=D wess, wee(Tsw)w. Then

= (ro+mr)* = (rir)*rg .

We now turn to matrices M € AZ*"((X*)). In Theorem 5.9 and Corol-
lary 5.10, we partition M and M™* into blocks

My Mo * M*(ni,m1)  M*(ni,n2)
M = d M*= ,
( M21 M22 ) an ( M* (TLQ, nl) M*(’H,Q, ’ILQ)

where ny +ng = n, My, M*(n1,n1) € AZV" (X)) and Mag, M*(ng,n2) €
Apzxn2((X*)). The next theorem shows that, under certain conditions, the
matrix-star-equation is valid.

Theorem 5.9 Let M € AL*"(X")) and assume that Myy and Mag are cycle-
free and (Ma1,e) = 0. Then M is cycle-free and

M*(ny,n1) (Mi1 + Myo Mgy Moap)*

M*(ni,n2) = (M + MioM3yMay)* Mo Ms,

M*(nm 1) = (Mo + Moy My y Mig)* Moy M7y,
M*(ng,n2) = (Mag+ Moy M{iMip)".

Proof. In the proof of Theorem 4.22 of Kuich, Salomaa [13] it is shown that, for
J=1

(M,E)j = ( (Mlé’g)J Zj1+j2:j*1(M1(1]\’42):’1€()]\3412’€)(M2275)32 ) .

Since M;; and May are cycle-free there exist ki, ks > 1 such that (M;,¢)* =0
and (Mys,e)k2 = 0. Hence, (M,e)*T*2+1 =0 and M is cycle-free.

Let now
a1 = M 0 and a9 = 0 My
te 0 Moy 27\ My, 0

and consider the matrix

* _ (M117€) 0
(al + a‘2a/1a27€) - < 0 (MQQ,E) +

((Miﬁ)(Mgﬁ)>((M%£)(Méﬁ))((Miﬁ)(Mﬁﬁ))'

Since (Maz1,e) = 0 this matrix equals (a1,¢). Since a1 + ag = M, and a; and
a1 + azajas are cycle-free, we can apply Theorem 2.9 of Kuich, Salomaa [13]:

(a1 + a2)* = (a1 + agaia2)* (1 + agay) .

Computation of the right side of this equality yields the equations of our theo-
rem. U
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Corollary 5.10 Let M € AZ*"(X*)) and assume that Myy and May are cycle-
free and My, = 0. Then M is cycle-fee and

A — My My MiaMs,
0 M3y ’

Corollary 5.11 Let M € A7L*" (X)) be of the form

My Mz Mis
M = 0 My M |,
0 0 Ms3s

where My1, Mass and Mss are square blocks and assume that these blocks are
cycle-free matrices. Then M is cycle-free and

Ml*l Mf1M12M52 Mf1M12M§2M23M§3 Jr]\/-"ikljwl3]\4§k:’>
M* = 0 M3y M3y Moz M3s
0 0 M3,

Theorem 5.12 Let M € (A, (X*))"*™ and M’ € (A (X*)))™>*". Then
MM’ is cycle-free iff M' M is cycle-free and, in this case,

(MM')* M = M(M'M)*.
Proof. If MM’ is cycle-free there exists a k > 1 such that ((MM')¥ &) = 0. This
implies that ((M'M)**1 &) = (M'(MM')*M,e) = 0. Hence MM’ is cycle-free
ifft M'M is cycle-free.
We now distinguish three cases: ny = ny, n1 > ng and n; < no.

(i) If ny = ng then Theorem 5.5 proves our theorem.

()Tt > w01 = (), = (0 ¢), where 0, € (4,(57))"="

b
a 0 a
Denote My = ( b 0 ), M| = ( 0 0 ) and observe that MyM| = MM’
!/
and M{My = ( MOM 8 ) Moreover, by Corollary 5.10,

(M M) = ( a1 ) .

We now apply Theorem 5.5 and obtain, by (MoM{)*My = Mo(M{My)*, the
equation (MM")*M = M(M'M)*.

!
(iii) If ng > nq, write M = (a c), M’ = Z, , where a,a’ € (A, (X*)))™"*"2.
!
Denote My = ( 8 g >, M| = ( Z, 8 ) and observe that
, [ MM' 0
MoMo = ( 0 0
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and MMy = M’'M. Moreover, by Corollary 5.10,

gy = (M0

We now apply Theorem 5.5 and obtain, by (MoM{)*My = Mo(M{My)*, the
equation (MM')*M = M (M'M)*. 0

We now show part of the Kleene Theorem of Droste, Kuske [4], Theorem 3.6.
Before, some auxiliary results are necessary.

A finite automaton A = (n,I, M, P) over A,(¥*)) is called normalized if
n > 2 and

(1) 11:€,Ii:072gi§n;
(i) P,=e,P,=0,1<i<n-—1;

Theorem 5.13 Let A be a cycle-free finite automaton over A,(¥X*)). Then
there exists a normalized cycle-free finite automaton A over A,(X*)) with
2] = [[=L]]-

Proof. Let 2 = (n, I, M, P). Define

0 I O 0
A'=14+n+1,|1 0 M P |,(00),]| 0 ]).
0 0 O €

Then 2’ is normalized. Moreover, by Corollary 5.11, 2’ is cycle-free. Applying
Corollary 5.11 yields the proof that ||| = ||2L]]. 0

Theorem 5.14 Let 2, and Ay be cycle-free finite automata over A, {(3*)).
Then there exist cycle-free finite automata Ay + Ay and A1™As over A, (X*)
with [[Ay + A | = [[A]| + [[A2]] and [[AAa[| = [|2A:[[]|A2]]

Proof. Let A; = (n;, I;, M;, P;), i = 1,2. Define

My O P
Q‘l +Q[2 = (Tll +TL2, < 01 M2 ) 7(11 IQ)7 < P; > )
M, P S 0
Q[15212 - (nl +n2; < 01 ]\14'22 ) a(Il 0)7 ( P2 ) .
Then, by Corollary 5.10, 21y + 2> and 20,25 are cycle-free. Applying Corol-
lary 5.10 yields the proof that || + Aa|| = [|][ + [[™A2]| and [|A;As|| =
IREYIRIPYE O

A finite automaton A = (n, I, M, P) over A, ((X*)) is called e-free if (M,e) =
0.
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Theorem 5.15 Let A be a cycle-free finite automaton over A,(X*)). Then
there exists an e-free finite automaton A" over A, (X*)) with ||| = [|]|.

Proof. Let A = (n,I, M, P). Define
A = (n, I, MM, M;P),

where My = (M,e) and My =} (M, z)x. Then ' is e-free. We now apply
the sum-star-equation of Corollary 5.8: ||| = I(M{M,)*MzP = I(My +
M) P = IM*P = |2 -

Theorem 5.16 Let A be an e-free finite automaton over A,(3*)). Then there
exists a cycle-free finite automaton A* over A, ((X*)) with ||A*|| = ||A]]*.

Proof. Let 2 = (n,I, M, P). Define
At = (n,I,M + PI, P).

Since 2 is e-free, we obtain IP = 0. Hence, (PI)? = 0 and ¥ is cycle-free. We
now apply Theorems 5.7 and 5.12: ||AT|| = [(M + PI)*P = I(M*PI)*M*P =

IM*P(IM*P)*.

Consider now the e-free finite automata 2. = (1,¢,0,¢) and A* = A, + AT
over A,(X*)) with ||2]| = € and [|2*]| = ||A||*. Here the second equality is
obtained by Theorem 5.14 and Corollary 5.4. 0O

Theorem 5.17 Givenr € A, (X U¢), there exists a cycle-free finite automaton
A over A, (X*)) with ||2A]| = 7.

Proof. For a € A, the finite automaton 2, = (1, ae, 0, ) has behavior ||,|| = ae.
For z € ¥, the finite automaton

2.-eco(y 6 ) ()

has behavior ||2,|| = =.
Since each r € A, (X Ue) is generated from ae, a € A, and z, € X, by
addition and multiplication, Theorem 5.14 proves our theorem. O

Corollary 5.18 Ifr € Rat(A,(XUe)) then there exists a cycle-free finite auto-
maton A over A, (X*)) such that ||A]| = 1.

Theorem 5.19 Let M € (A,(E*))™*™ with (M,e) =0.
Then M* € (Rat(A,(EUe)))™*™.

Proof. An easy proof by induction on n using the matrix-star-equation of The-
orem 5.9 proves our theorem (see Theorem 8.1 of Kuich, Salomaa [13]). 0

Theorem 5.20 (Droste, Kuske [4]) Let A be a semiring, ¢ : A — A be an en-
domorphism and 3 be an alphabet. Then the following statements are equivalent
forre A (X*):
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(1) r=12||, where A is a cycle-free finite automaton over A, ((X*)),
(i1) v = ||2A||, where A is an e-free finite automaton over A,{(X*),
(i1i) r € Rat(Ay (X Ue)).

Proof. (i) = (ii): By Theorem 5.15. (ii) = (iii): By Theorem 5.19. (iii) = (i):
By Corollary 5.18. O

Droste, Kuske [4] introduce generalized weighted automata. This model of
a finite automaton is captured by our next definition.

A generalized finite automaton A = (n,I, M, P) over A,{(X*)) is defined
as a finite automaton over A, ((X*)), except that M € (Rat(A,(X U e)))"*".
If M € (Rat(Ax(X U g)))"*™ with (M,e) = 0, then we obtain by an easy
proof by induction on n using the matrix-star-equation of Theorem 5.9 that
M* € (Rat(Ay (X Ue)))™™" (see Theorem 8.1 of Kuich, Salomaa [13]). This
together with a generalized version of Theorem 5.15 yields the following result,
due to Droste, Kuske [4].

Theorem 5.21 (Droste, Kuske [4]) Let A be a semiring, ¢ : A — A be an
endomorphism and X be an alphabet. Then the following statements on r €
A ((E*)) are equivalent to the statements of Theorem 5.20:

() r = ||A||, where A is a cycle-free generalized finite automaton over A, (3*)),
(v) = |||, where A is an e-free generalized finite automaton over A, ((X*)).
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