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Abstract

Magmoids satisfying the 15 fundamental equations of graphs, namely
D-magmoids, are introduced. Automata on directed hypergraphs are de-
fined by virtue of finite relational D-magmoids. Two different modes of
graph recognizability arise, their closure properties are investigated, and
a comparison is being made between the two classes.

1 Introduction

A hypergraph consists of a set of nodes and a set of hyperedges, just as an ordi-
nary (directed) graph except that a hyperedge may have an arbitrary sequence
of sources and an arbitrary sequence of targets. Each hyperedge is labelled with
a symbol from a doubly ranked alphabet Σ in such a way that the first (sec-
ond) rank of its label equals the number of its sources (targets respectively).
Also, every hypergraph is multi-pointed in the sense that it has a sequence of
m “begin” and n “end” nodes, m,n ≥ 0.

From now on a hypergraph will also be called a graph, and its hyperedges
edges; furthermore, to specify the number of begin and end nodes, it will be
called an (m,n)-graph. We denote by GRm,n(Σ) the set of all (m,n)-graphs
labelled over Σ. Any graph G ∈ GRm,n(Σ) having no edges, is called discrete.

If G is an (m, n)-graph and H is an (n, k)-graph then their product G ◦H
is the (m, k)-graph obtained by taking the disjoint union of G and H and then
identifying the ith end node of G with the ith begin node of H, for every
i ∈ {1, ..., n}; also, the sequence of begin nodes of G ◦H is the one of G, and its
sequence of end nodes the one of H.

The sum G ¤ H of arbitrary graphs G and H is their disjoint union with
their sequences of begin nodes concatenated and similarly for their end nodes.

The family GR(Σ) = (GRm,n(Σ))m,n∈N with the operations ◦ and ¤ forms a
magmoid in the sense of [1, 2], that is, a strict monoidal category (or x-category)
whose objects are the natural numbers (see e.g. [11, 8]). The algebraic structure
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of magmoids seems to be the suitable framework for representing and generat-
ing directed labelled hypergraphs primarily due to two critical advantages: its
generative power and its finite axiomatization.

Indeed, Engelfriet and Vereijken proved that, GR(Σ) is finitely generated,
that is, any graph can be built from a specific finite set of elementary graphs
(cf. [6]). More precisely, let us denote by Ip,q the discrete (p, q)-graph having
a single node x and whose begin and end sequences are x · · ·x (p times) and
x · · ·x (q times) respectively. Let also Π be the discrete (2, 2)-graph having two
nodes x and y and whose begin and end sequences are xy and yx, respectively,
and for n ≥ 0, let En be the graph with n nodes x1, . . . , xn whose begin and
end sequence is x1 · · ·xn; we also write E for E1. Note that the graphs En are
the units in the category GR(Σ), i.e., if G is an (m, n)-graph, then Em ◦G = G
and G ◦ En = G. Finally, for every σ ∈ Σm,n, we denote by G(σ) the (m, n)-
graph having only one edge and m+n nodes x1, . . . , xm, y1, . . . , yn. The edge is
labelled by σ, and the begin (resp. end sequence) of the graph is the sequence
of sources (resp. targets) of the edge, viz. x1 · · ·xm (resp. y1 · · · yn).

The following important result is due to Engelfriet and Vereijken (see The-
orem 7 of [6]).

Theorem. Any (m, n)-graph over the finite, doubly ranked alphabet Σ can be
constructed from the graphs of the set

{G(σ) | σ ∈ Σ} ∪ {I2,1, I0,1, I1,2, I1,0,Π}

by using the operations ◦ and ¤, and the unit graphs En.

Note that not all units are needed (in fact just the empty graph E0) because
E = I1,1 = I1,2 ◦ I2,1 and En = E ¤ · · ·¤ E (n times).

Now let us introduce the alphabet D, formed by the following five symbols

i21 : 2 → 1 i01 : 0 → 1 i12 : 1 → 2 i10 : 1 → 0 π : 2 → 2

where x : m → n indicates that symbol x has first rank m and second rank
n, and denote by mag(XΣ) the free magmoid generated by the doubly ranked
alphabet XΣ = Σ ∪D. The set mag(XΣ) consists of all expressions built from
the constants in XΣ, the binary operations ◦ and ¤, and the constants en (n ≥ 0;
the units of the magmoid), modulo the laws of magmoids. We call the elements
of mag(XΣ) patterns over XΣ.

In what follows, the operations ◦ and ¤ of mag(XΣ) will also be denoted as
horizontal and vertical concatenation:

α ◦ β as αβ , and α ¤ β as
(

α
β

)

respectively. We denote by

valΣ : mag(XΣ) → GR(Σ)
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the unique magmoid morphism extending the function described by the assign-
ments

i21 7→ I2,1, i01 7→ I0,1, i12 7→ I1,2, i10 7→ I1,0, π 7→ Π,

σ 7→ G(σ), for all σ ∈ Σ, en 7→ En, for all n ∈ N.

The previous theorem implies that the morphism valΣ is a surjection. How-
ever, valΣ is not an injection and in fact, for any given hypergraph, there are
infinitely many patterns representing it.

This ambiguity was recently settled by constructing a finite set of equations
with the property that two patterns represent the same hypergraph if and only
if one can be transformed into the other through these equations (cf. [4]).

More precisely, we denote by πm,n the pattern inductively defined by

• π1,0 = e, π1,n =
(

en−1

π

)(
π1,n−1

e

)
. Notice that for n = 1, π1,1 = π.

• π0,n = en, πm,n =
(

πm−1,n

e

)(
em−1

π1,n

)
.

Given a finite doubly ranked alphabet Σ, the set of equations

E : ππ = e2,

(
e
π

)(
π
e

)(
e
π

)
=

(
π
e

)(
e
π

)(
π
e

)
,

(
e

i21

)
i21 =

(
i21
e

)
i21,

(
e

i01

)
i21 = e, πi21 = i21,

(
π
e

)(
e
π

)(
i21
e

)
=

(
e

i21

)
π,

(
e

i01

)
π =

(
i01
e

)
,

i12

(
e

i12

)
= i12

(
i12
e

)
, i12

(
e

i10

)
= e, i12π = i12, i12 i21 = e,

(
i12
e

)(
e
π

)(
π
e

)
= π

(
e

i12

)
, π

(
e

i10

)
=

(
i10
e

)
,

(
i12
e

)(
e

i21

)
= i21 i12,

πp,1

(
σ
e

)
=

(
e
σ

)
πq,1, where σ ∈ Σp,q, p, q ≥ 0,

has the following property: for all patterns p and q,

valΣ(p) = valΣ(q) if and only if p =
E

q.

Therefore, GR(Σ) is characterized as the quotient of the free magmoid gen-
erated by Σ, divided by E , or equivalently, it is the free object generated by
Σ within the category of all magmoids M = (Mm,n), which are endowed with
elements π ∈ M2,2, i21 ∈ M2,1, i01 ∈ M0,1, i12 ∈ M1,2, i10 ∈ M1,0, satisfying the
equations E .
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In this respect, various algebraic properties of graphs and graph languages
can be investigated inside the framework of magmoids. Our aim in the present
paper is to study automata on patterns and graphs.

The paper is divided into 8 sections. The notion of a magmoid, together with
some preliminary matter, is presented in Section 2. Examples of this algebraic
structure are considered: magmoids of functions and magmoids of relations. We
particularly insist in the construction of the magmoid of hypergraphs by recalling
the definition of hypergraphs introduced in [6] together with the operations
product and sum. In Section 3, we construct the free magmoid generated by a
doubly ranked alphabet and give the definitions of pattern and pattern language.

The deterministic and nondeterministic pattern automata are presented in
Section 4. Our nondeterministic pattern automaton was first introduced in [3],
where a Kleene Theorem is presented for these devices. We prove that the
deterministic and nondeterministic classes are equivalent and prove that this
class is closed under ¤, ¤-star, intersection, magmoid morphisms and inverse
alphabetic morphisms.

In Section 5 we introduce the D-magmoid, i.e., a magmoid equipped with
five elements satisfying the equations E . A D-magmoid over the magmoid of
relations is called relational. Two important examples of relational D-magmoids
are presented: the diagonal and the group D-magmoid. In the second case the
D-magmoid is constructed by virtue of an arbitrary commutative group. We are
particulary interested in group D-magmoids corresponding to the cyclic groups
Zm, m ≥ 2. Moreover, we prove that the set of all graphs over the doubly
ranked alphabet Σ, is the free D-magmoid generated by Σ.

Automata on graphs are introduced in Section 6. Graph automata are de-
fined with respect to a finite relational D-magmoid. Two different modes of
graph recognizability arise, namely the diagonal and the group recognizability,
corresponding respectively to the diagonal and the group D-magmoid.

Closure properties of the two classes are investigated in Section 7. Diagonal
and group recognizability is proved to be closed under union, intersection and
graph homomorphism. Moreover, the inverse image of a (diagonal or group)
recognizable graph language via the magmoid morphism valΣ is a recognizable
pattern language.

In the last Section we investigate the hierarchy inside the class of Zm-
recognizable graph languages, m ≥ 2. We prove that m | n if and only if
every Zm-recognizable graph language is Zn-recognizable. Moreover, we prove
that the classes of diagonal and group recognizable graph languages are incom-
parable but not disjoint.

2 Magmoids

Recall that a doubly ranked set (or a doubly ranked alphabet) (Am,n)m,n∈N is a
set A together with a function rank : A → N×N, where N is the set of natural
numbers. For m, n ∈ N, Am,n is the set {a ∈ A | rank(a) = (m, n)}. In what
follows we will drop the subscript m,n ∈ N and denote a doubly ranked set
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simply by (Am,n).
A magmoid is a doubly ranked set M = (Mm,n) equipped with two opera-

tions

◦ : Mm,n ×Mn,k → Mm,k, m, n, k > 0

¤ : Mm,n ×Mm′,n′ → Mm+m′,n+n′ , m, n,m′, n′ > 0

which are associative in the obvious way and satisfy the distributivity law

(f ◦ g) ¤ (f ′ ◦ g′) = (f ¤ f ′) ◦ (g ¤ g′)

whenever all the above operations are defined. Moreover, both the operations
◦ and ¤ are unitary, i.e., M is equipped with a sequence of constants en ∈
Mn,n (n > 0), called units, such that

em ◦ f = f = f ◦ en, e0 ¤ f = f = f ¤ e0

for all f ∈ Mm,n and all m,n > 0, and the additional condition

em ¤ en = em+n, for all m, n > 0

holds.
In other words a magmoid is nothing but an x-category (cf. [5, 8, 9]) or

strict monoidal category (cf. Chapter VII of [11]) whose set of objects is the
set of natural numbers. Submagmoids, morphisms, congruences and quotients
of magmoids are defined in the obvious way.

Example 1 (Magmoids of Functions and Relations). Let Q be a non-
empty set and denote by Vm(Q) the set of all vertical words of Q with length
m > 0. Concatenation on vertical words is symbolized by ¤:

if u =
q1
.
:

qm

and w =
p1
.
:

pn

, then u¤w =

q1.
:

qm
p1:
.

pn

thus
q1
.
:

qm

= q1¤ · · ·¤qm.

In what follows, for the sake of simplicity, we shall identify the vertical word
q1¤ · · ·¤qm with the word q1 . . . qm.

The sets Functm,n(Q) of all functions from Vm(Q) to Vn(Q)

Functm,n(Q) = {f | f : Vm(Q) → Vn(Q)}, m, n > 0,

can be structured into a magmoid with ◦ being the usual function composi-
tion, while the operation ¤ is the function boxing defined as follows: for f ∈
Functm,n(Q) and f ′ ∈ Functm′,n′(Q)

f¤f ′(u¤u′) = f(u)¤f ′(u′), u ∈ Vm(Q) , u′ ∈ Vm′(Q).
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In a similar way the sets

Relm,n(Q) = {R | R ⊆ Vm(Q)× Vn(Q)}

of all relations from Vm(Q) to Vn(Q) can be organized into a magmoid, ◦ being
the relation composition and ¤ the relation concatenation.

Clearly Funct(Q) = (Functm,n(Q)) is a sub-magmoid of Rel(Q) = (Relm,n(Q)).

Example 2 (The Magmoid of Hypergraphs). Given a finite alphabet X,
we denote by X∗ the set of all words over X and for every word w ∈ X∗,
|w| denotes its length. Formally, a concrete (m,n)-graph over a doubly ranked
alphabet Σ = (Σm,n) is a tuple

G = (V, E, s, t, l, begin, end)

where

- V is the finite set of nodes,

- E is the finite set of hyperedges,

- s : E → V ∗ is the source function,

- t : E → V ∗ is the target function,

- l : E → Σ is the labelling function such that rank(l(e)) = (|s(e)|, |t(e)|) for
every e ∈ E,

- begin ∈ V ∗ with |begin| = m is the sequence of begin nodes and

- end ∈ V ∗ with |end| = n is the sequence of end nodes.

For an edge e of a hypergraph G we simply write rank(e) to denote rank(l(e)).
We denote by GRm,n(Σ) the set of all (m,n)− graphs labelled over Σ.

The specific sets V and E chosen to define a concrete graph G are actually
irrelevant. We shall not distinguish between two isomorphic graphs. Hence
we have the following definition of an abstract graph. Two concrete (m,n)-
graphs G = (V, E, s, t, l, begin, end) and G′ = (V ′, E′, s′, t′, l′, begin′, end′) over
Σ are isomorphic iff there exist two bijections hV : V → V ′ and hE : E → E′

commuting with source, target, labelling, begin and end in the usual way.
An abstract (m,n)-graph is defined to be the equivalence class of a concrete

(m, n)-graph with respect to isomorphism. We denote by GRm,n(Σ) the set of
all abstract (m, n)-graphs over Σ. Since we shall mainly be interested in abstract
graphs we shall simply call them graphs except when it is necessary to emphasize
that they are defined up to an isomorphism.

Any graph G ∈ GRm,n(Σ) having no edges, is called a discrete (m,n)-graph.
Given an edge label σ ∈ Σm,n, we still denote by σ the (m,n)-graph such that
V = {x1, . . . , xm, y1, . . . , yn}, E = {e} with l(e) = σ, begin = s(e) = x1 · · ·xm

and end = t(e) = y1 · · · yn.
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If G is a (m, n)-graph represented by (V, E, s, t, l, begin, end) and H is an
(n, k)-graph represented by (V ′, E′, s′, t′, l′, begin′, end′) then their product G◦H
is the (m, k)-graph represented by the concrete graph obtained by taking the
disjoint union of G and H and then identifying the ith end node of G with the
ith begin node of H, for every i ∈ {1, ..., n}; also, begin(G ◦H) = begin(G) and
end(G ◦H) = end(H).

The sum G ¤ H of arbitrary graphs G and H is their disjoint union with
their sequences of begin nodes concatenated and similarly for their end nodes.

For instance let Σ = {a, b, c, d}, with rank(a) = (2, 1), rank(b) = (1, 1),
rank(c) = (2, 2) and rank(d) = (1, 2). In the following pictures, edges are
represented by boxes, nodes by dots, and the sources and targets of an edge by
directed lines that enter and leave the corresponding box, respectively. The order
of the sources and targets of an edge is the vertical order of the directed lines as
drawn in the pictures. We display two graphs G ∈ GR3,2(Σ) and H ∈ GR2,2(Σ),
where the ith begin node is indicated by bi, and the ith end node by ei.

b

a

c

e1

e2b3

b2

b1

G

b1

b2

a d

e1

e2

H

Then their product G ◦H is the (3, 2)-graph

a d

e1

e2b

a

c

b3

b2

b1

and, their sum G ¤ H is the (5, 4)-graph

b

a

c

e1

e2b3

b2

b1

b4

b5

a d

e3

e4

For every n ∈ N the unit En of rank (n, n) is the discrete graph with nodes
x1, ..., xn and begin(En) = end(En) = x1 · · ·xn. Note that E0 is the empty
graph.

It is straightforward to verify that GR(Σ) = (GRm,n(Σ)) with the opera-
tions defined above is a magmoid, see Lemma 6 of [6]. Subsets of GR(Σ) are
referred as graph languages. The discrete graphs of GR(Σ) form manifestly a
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sub-magmoid DISC of GR(Σ) and the function sending each graph G ∈ GR(Σ)
to its underlying discrete graph is indeed an epimorphism of magmoids

discΣ : GR(Σ) → DISC.

Let G be an (m, n) − graph over a doubly ranked alphabet Σ and e an edge
of G whose source and target sequences are v1, ..., vκ and u1, ..., uλ respectively.
The triple (vi, e, uj) is a simple directed path of G from vi to uj (1 ≤ i ≤ κ, 1 ≤
j ≤ λ); its label will be a new symbol σij, where σ is the label of e. We set

path(Σ) = {σij | σ ∈ Σm,n, 1 ≤ i ≤ m, 1 ≤ j ≤ n , m, n > 0}.
In this way, we obtain a canonical doubly ranked function

path : GR(Σ) → GR(path(Σ))

sending each (m,n) − graph G over Σ to the (m,n) − graph path(G) over
path(Σ) obtained by substituting every hyperedge e of G by all directed edges as
defined above. It is easily seen that

path(G ◦G′) = path(G) ◦ path(G′) and path(G ¤ G′) = path(G) ¤ path(G′)

i.e., path is actually a morphism of magmoids. The graph G ∈ GRm,n(Σ) is
said to be connected whenever path(G) is connected in the ordinary sense.

In order to fix our notation we need the following definitions. Let M = Mm,n

be a magmoid. We say that a doubly ranked family L = (Lm,n) is a subset of
M (notation L ⊆ M), whenever Lm,n ⊆ Mm,n for all m,n ∈ N. The boolean
operations on subsets of M are defined in the obvious way. A family f = (fm,n)
with fm,n ∈ Mm,n for all m, n ∈ N is called an element of M . A zero element
in M is an element 0 = (0m,n) such that

0m,n ◦Mn,k = 0m,k = Mm,n ◦ 0n,k and

0m,n ¤ Mp,q = 0m+p,n+q = Mm,n ¤ 0p,q.

To any magmoid M we can adjoin a zero element in the obvious way. M0 stands
for the so obtained magmoid.

The structure of all subsets of a magmoid M is that of a double semiring with
respect to the operations of union, ◦ -product and ¤ -product. More precisely
a double semiring is a 7-tuple (K, +, 0, ◦, e, ¤, f) where ◦ and ¤ are two binary
operations on K such that both (K, +, 0, ◦, e) and (K, +, 0,¤, f) are semirings
with units e and f respectively and the following distributivity law is satisfied:

(a ◦ b) ¤ (c ◦ d) = (a ¤ c) ◦ (b ¤ d), a, b, c, d ∈ K.

For instance, any commutative semiring can be viewed as a double semiring.
Next, given subsets L, L′ of a magmoid M (with unit sequence en) we define

their ◦ -product L ◦ L′ by setting

(L ◦ L′)m,n =
⋃

k>0

Lm,k ◦ L′k,n, m, n ∈ N
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and their ¤ -product L ¤ L′ by setting

(L ¤ L′)m,n =
⋃

κ+κ′=m
λ+λ′=n

Lκ,λ ¤ L′κ′,λ′ , m, n ∈ N.

The subsets E and F of M given by Em,n = {en} if m = n and ∅ else, while
Fm,n = {e0} if m = n = 0 and ∅ else, are the units of the operations ◦ and
¤ respectively. The reader will verify that the set of all subsets of M together
with ∪, ◦, ¤ is a double semiring.

The ◦ -star is the union of the successive ◦ -powers of L ⊆ M :

L◦ =
⋃

k>0

L◦,k

where L◦,k is inductively given by

L◦,0 = E, L◦,1 = L, ..., L◦,k+1 = L ◦ L◦,k.

The ¤ -star L� is defined analogously.

3 Free magmoids

Let X = (Xm,n) be a doubly ranked alphabet. We denote by F(X) = (Fm,n(X))
the set of expressions, built from the operations ◦ and ¤ and the constants in
X, together with the units en ∈ Fn,n(X), n ≥ 0, where en is a specified symbol
not belonging to Xn,n; we set e1 = e. More precisely, F(X) is the smallest
doubly ranked set inductively defined as follows:

1. Xm,n ⊆ Fm,n(X), for all m,n > 0.

2. For every m > 0, em ∈ Fm,m(X).

3. If α ∈ Fm,n(X) and β ∈ Fn,k(X) then the expression (α◦β) is in Fm,k(X)
for all m,n, k > 0.

4. If α ∈ Fm,n(X) and β ∈ Fm′,n′(X) then the expression (α ¤ β) is in
Fm+m′,n+n′(X) for all m,n,m′, n′ > 0.

Let ∼ = (∼m,n) be the congruence on F(X) generated by the following
relations :

f1 ◦ (f2 ◦ f3) ∼ (f1 ◦ f2) ◦ f3 and g1 ¤ (g2 ¤ g3) ∼ (g1 ¤ g2) ¤ g3

(f1 ◦ f2) ¤ (g1 ◦ g2) ∼ (f1 ¤ g1) ◦ (f2 ¤ g2)

em ◦ f ∼ f ∼ f ◦ en, e0 ¤ f ∼ f ∼ f ¤ e0, em ¤ en ∼ em+n
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for all f1, f2, f3, g1, g2, g3, f ∈ F(X) of the appropriate rank and all m,n ≥ 0.
The elements of the quotient magm,n(X) = Fm,n(X)/ ∼m,n are called

(m, n)-patterns over the alphabet X. Note that mag(X) = (magm,n(X)) is
by construction a magmoid. Given a finite set {x1, . . . , xn} we denote by
mag(x1, . . . , xn) the magmoid mag({x1, . . . , xn}).

Our patterns are exactly the unsorted abstract dags of [10] and [3]. For
another formalization see also [7].

Remark. It was in [9], where graphs (viz. the derivation graphs of type-0 Chom-
sky grammars) were first characterized as a free x-category.

Convention. From now on, the operations ◦ and ¤ will also be denoted as
horizontal and vertical concatenation:

α ◦ β as αβ , and α ¤ β as
(

α
β

)

respectively. With this convention the distributivity law takes the form
(

α1β1

α2β2

)
=

(
α1

α2

)(
β1

β2

)

whereas the nth unit element en can be written

en = e ¤ e ¤ · · ·¤ e =




e
...
e


 (n times).

The construction of the free magmoid follows naturally.

Theorem 1. Let X = (Xm,n) be a doubly ranked alphabet. The magmoid
mag(X) is the free magmoid generated by X. In other words, the injective
function

j : X → mag(X), j(x) = x, for all x ∈ X,

has the following universal property: for any function h : X → M , where M is
a magmoid, there is a unique morphism of magmoids

ĥ : mag(X) → M

rendering commutative the following diagram.

X
j

mag(X)

M

ĥ
h

Explicitly ĥ is inductively defined by
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- ĥ(x) = h(x), x ∈ X,

- ĥ(p1p2) = ĥ(p1) ◦ ĥ(p2), p1 ∈ magm,n(X), p2 ∈ magn,k(X), m,n, k ≥ 0,

- ĥ

(
p1

p2

)
= ĥ(p1)¤ĥ(p2), p1 ∈ magm,n(X), p2 ∈ magm′,n′(X), m,n,m′, n′ ≥ 0.

Subsets of mag(X) are called pattern languages. A pattern equation over
the doubly ranked alphabet X is a pair (p, p′) with p, p′ ∈ magm,n(X) for
some m,n ≥ 0. We say that the equation p = p′ is satisfied in the magmoid
M , whenever for any function h : X → M , we have ĥ(p) = ĥ(p′), where
ĥ : mag(X) → M is the unique extension of h as described in Theorem 1.

Example 3. Let M be a magmoid. The valuation function

valM : mag(M) → M

is the morphism of magmoids uniquely extending the identity function

i : M → M.

If α is a pattern constructed by elements of M , valM (α) is obtained by per-
forming in M all the indicated operations on it. For instance if p ∈ M2,2 and
ω ∈ M2,1 then

val

(
p p
p ω

)
= (p ◦ p) ¤ (p ◦ ω).

4 Pattern automata

Let X = (Xm,n) be a doubly ranked alphabet. A nondeterministic pattern
automaton over X is a structure A = (X, Q, I, E, T ), where Q is a finite set of
states, I ∈ P(Q) and T ∈ P(Q) are the sets of initial and final states, and E is
a finite set

E ⊆
⋃

m,n≥0

Vm(Q)×Xm,n × Vn(Q).

The elements of E are called transitions (Vm(Q) is the set of all vertical words
of Q whose length is m, see Example 1). The triple (u, a, v) ∈ E can be depicted
as

a

qm

...

q1

...
pn

p1

u = q1 . . . qm, v = p1, . . . , pn

In the case that for any two different triples (u, α, v) and (u′, α, v′) of E it
holds u 6= u′ the automaton is called deterministic.

The behavior of the automaton is obtained as follows: we first define the
doubly ranked function
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extm,n : magm,n(E) → Vm(Q)× Vn(Q), m, n ≥ 0,

by sending each element of magm,n(E) to the begin and end state words of it:

- extm,n(r) = (u, v) if r = (u, a, v) ∈ E, a ∈ Xm,n

- if extm,n(s) = (u, v) and extn,k(s′) = (u′, v′), then extm,k(s s′) = (u, v′)

- if extm,n(t) = (u, v) and extm′,n′(t′) = (u′, v′), then extm+m′,n+n′

(
t
t′

)
=

(u¤u′, v¤v′), where u¤u′ is the vertical concatenation of u and u′.

On the other hand we define the subset L(A) of mag(E) inductively by setting

- r ∈ Lm,n(A) for all r = (u, a, v) ∈ E, a ∈ Xm,n,

- if s ∈ Lm,n(A), s′ ∈ Ln,k(A) and extm,n(s) = (u, v), extn,k(s′) = (v, w) then
s s′ ∈ Lm,k(A),

- If t ∈ Lm,n(A), t′ ∈ Lm′,n′(A) then
(

t
t′

)
∈ Lm+m′,n+n′(A).

Then we set
|A| = {s ∈ L(A) | ext(s) ∈ I × T}.

Theorem 2. Given a nondeterministic pattern automaton A = (X, Q, I, E, T )
we can construct a deterministic automaton A′ with the same behavior.

Proof. We take the powerset P(Q) as the state set of A′ and we define the set
Edet as follows: for each α ∈ Xm,n, the triple (Q1 · · ·Qm, α, P1 · · ·Pn) ∈ Edet

whenever there exist q1 ∈ Q1, . . . , qm ∈ Qm and p1 ∈ P1, . . . , pn ∈ Pn such that
(q1 · · · qm, α, p1 · · · pn) ∈ E.

Moreover, we define the rational set I ′ ⊆ P(Q)∗ by taking the word Q1 · · ·Qm

of P(Q)∗ to be in I ′ whenever there exist q1 ∈ Q1, . . . , qm ∈ Qm such that the
word q1 · · · qm ∈ I. The set T ′ is obtained in a similar way. The sets I ′ and T ′

are rational subsets of P(Q)∗ as confirms the lemma below, and we can verify
that the so obtained deterministic automaton A′ is equivalent to A.

Lemma 1. If L ⊆ A∗ is recognizable, then so is L̂ ⊆ P(A)∗ with Q1 · · ·Qm ∈ L̂
whenever there are q1 ∈ Q1, . . . , qm ∈ Qm such that q1 · · · qm ∈ L.

Proof. Let h : A∗ → M be a monoid morphism (M finite monoid) so that
L = h−1(P ) for some P ⊆ M . Let us consider the powerset monoid P(M)
whose operation is the subset multiplication and the monoid morphism ĥ :
P(A)∗ → P(M) defined by the formula

ĥ(Q1 · · ·Qm) = h(Q1) • · · · • h(Qm)
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where “•” is the multiplication of P(M). Then L̂ = ĥ−1(P ′), where

P ′ = {B | B ⊆ M,B ∩ P 6= 0}.

The set of all behaviors of (deterministic or nondeterministic) pattern au-
tomata over X is denoted AREC(X).

Remark. Notice that our nondeterministic pattern automata where first intro-
duced by Bossut, Dauchet and Warin in [3], under the name pdag (planar
directed acyclic graph) automata. In [3] it is proved that AREC(X) is closed
under union, nondeterministic parallel composition, serial composition, and the
iterations of these compositions.

Proposition 1. If F : mag(X) → mag(X ′) is a magmoid morphism, then
L ∈ AREC(X) implies F (L) ∈ AREC(X ′).

Proof. Assume that A = (X, Q, I, E, T ) is a pattern automaton over X; then
the automaton

F (A) = (X ′, Q, I, F (E), T )

with
F (E) = {(u, F (a), v) | (u, a, v) ∈ E}

computes the subset F (|A|).
Proposition 2. AREC(X) is closed under ¤ and ¤-star

Proof. Let Ai = (X, Qi, Ii, Ei, T i), i = 1, 2 be two pattern automata, with
Q1 ∩Q2 = ∅. Then |A1|¤|A2| is the behavior of the automaton

A1¤A2 = (X, Q1 ∪Q2, I1I2, E1 ∪ E2, T 1T 2)

where I1I2 (resp. T 1T 2) is the concatenation of I1, I2 ∈ P(Q) (resp. T 1, T 2 ∈
P(Q)). Moreover, for any automaton A = (X, Q, I, E, T ) the automaton A� =
(X, Q, I∗, E, T ∗) recognizes L(A)�.

Proposition 3. If L1, L2 ∈ AREC(X) then L1 ∩L2 ∈ AREC(X) furthermore
if H : mag(X) → mag(Y ) is an alphabetic morphism then L ∈ AREC(Y )
implies H−1(L) ∈ AREC(X).

Proof. A product construction is used. Let Ai = (X,Q,Ii, Ei, Ti) be a pattern
automaton and denote by pri : Q1 × Q2 → Qi the canonical projection and
pr∗i : (Q1 × Q2)∗ → Q∗i its extension to free monoids (i=1,2). The automaton
A1 ∩ A2 = (X,Q1 ×Q2, I, E, T ) where

I = (pr∗1)−1(I1) ∩ (pr∗2)−1(I2)

and
T = (pr∗1)−1(T1) ∩ (pr∗2)−1(T2)
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whereas (w, x, v) ∈ E if and only if

(pr∗1(w), x, pr∗1v) ∈ E1 and (pr∗2(w), x, pr∗2v) ∈ E2

has as behavior |A1 ∩ A2| = |A1| ∩ |A2|.
Next consider an automaton A over the doubly ranked alphabet Y = (Ym,n).

Then the automaton H−1(A) = (X, Q, I, Ē, T ) with

Ē = {(u, x, v) | (u,H(x), v) ∈ E, x ∈ X}

computes the set H−1(|A|).

5 D-magmoids

As we have seen in the introduction, the equations E are satisfied in GR(Σ) by
replacing π by Π and iκλ by Iκ,λ. Magmoids with such a property are called
D-magmoids. More precisely, a D-magmoidM = (M,D) consists of a magmoid
M , called the domain of the D-magmoid, and a set D = {d, d01, d21, d10, d12},
where d ∈ M2,2, d01 ∈ M0,1, d21 ∈ M2,1, d10 ∈ M1,0, d12 ∈ M1,2 and the
equations E are satisfied by replacing π with d, iκλ by dκλ and the letters
σ ∈ Σm,n by all elements α ∈ Mm,n, m,n ≥ 0, i.e., the following 15 equations
hold:

ED : d d = e2,

(
e
d

)(
d
e

)(
e
d

)
=

(
d
e

)(
e
d

)(
d
e

)
,

(
e

d21

)
d21 =

(
d21

e

)
d21,

(
e

d01

)
d21 = e, d d21 = d21,

(
d
e

)(
e
d

)(
d21

e

)
=

(
e

d21

)
d,

(
e

d01

)
d =

(
d01

e

)
,

d12

(
e

d12

)
= d12

(
d12

e

)
, d12

(
e

d10

)
= e, d12d = d12, d12 d21 = e,

(
d12

e

) (
e
d

)(
d
e

)
= d

(
e

d12

)
, d

(
e

d10

)
=

(
d10

e

)
,

(
d12

e

)(
e

d21

)
= d21 d12,

dm,1

(
α
e

)
=

(
e
α

)
dn,1, for all α ∈ Mm,n, m, n ≥ 0,

where dm,1 is defined analogously with πm,1.
We recall from [4] that, if the last equation holds in GR(Σ) for all the letters

of the doubly ranked alphabet Σ, then it holds for every element of GR(Σ).
Thus the pair (GR(Σ), D), where D = {Π, I0,1, I2,1, I1,0, I1,2} is a D-magmoid.

A D-magmoid is called relational whenever its domain is the magmoid of
relations Rel(Q), where Q is an arbitrary set.
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Given D-magmoids (M, D) and (M ′, D′), a magmoid morphism H : M →
M ′ such that H(d) = d′ and H(dκλ) = d′κλ, is called a morphism of D-
magmoids.

Next we present two relational D-magmoids which will be useful in the con-
struction of graph automata.

Diagonal D-magmoids. Given a finite set Q, we consider the following ele-
ments of Rel(Q):

- d ∈ Rel2,2(Q), with d = {(q1q2, q2q1) | q1, q2 ∈ Q},
- d01 ∈ Rel0,1(Q), with d = {(ε, q) | q ∈ Q},
- d21 ∈ Rel2,1(Q), with d = {(qq, q) | q ∈ Q},
- d10 ∈ Rel1,0(Q), with d = {(q, ε) | q ∈ Q},
- d12 ∈ Rel1,2(Q), with d = {(q, qq) | q ∈ Q}.

The pairR∆ = (Rel(Q), {d, d01, d21, d10, d12}) manifestly constitutes a D-magmoid.

Group D-magmoids. Let G = (G, +, 0) be an additive group, we define
the following elements of Rel(G):

- d ∈ Rel2,2(G), with d = {(g1g2, g2g1) | g1, g2 ∈ G},
- d01 ∈ Rel0,1(G), with d = {(ε, 0)}, where ε is the empty word,

- d21 ∈ Rel2,1(G), with d = {(g1g2, g) | g1 + g2 = g and g, g1, g2 ∈ G},
- d10 ∈ Rel1,0(G), with d = {(0, ε)}, where ε is the empty word,

- d12 ∈ Rel1,2(G), with d = {(g, g1g2) | g = g1 + g2 and g, g1, g2 ∈ G}.
It is not hard to verify, that the equations ED are satisfied inside the magmoid
Rel(G). Thus the pair RG = (Rel(G), D), with D = {d, d01, d21, d10, d12},
forms manifestly a D-magmoid.

We have already discussed how the set GR(Σ) can be structured into a
D-magmoid; in fact it is the free D-magmoid generated by Σ.

Theorem 3. The doubly ranked function J : Σ → GR(Σ), with J(σ) = σ, for
all σ ∈ Σ, has the following universal property: for any doubly ranked function
f : Σ → M, where M is a D-magmoid, there exists a unique morphism of
D-magmoids f̄ : GR(Σ) →M making commutative the triangle

Σ
J

GR(Σ)

M

f̄
f
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Proof. By virtue of Theorem 1 there exists a unique magmoid morphism f̂
making commutative the triangle:

Σ
j

mag(Σ ∪D)

M

f̂
f

Since all equations E are valid in M, the kernel of f̂ includes E : Ker(f̂) ⊇ E .
It turns out that f̂ induces a unique D-magmoid morphism

f̄ : mag(Σ ∪D)/E = GR(Σ) −→M
rendering commutative the triangle:

mag(Σ ∪D)
g

GR(Σ)

M

f̄
f̂

The result comes by combining the above two diagrams.

6 Graph Automata

The algebraic structure of D-magmoids, and in particular relational D-magmoids,
will allow us to define automata on graphs. We will investigate the properties
of two distinguished graph language recognition modes according to the D-
magmoid structure that will be used as the state set. Hence we will speak of
the diagonal and the group recognition mode of graph languages.

Let Σ be a doubly ranked alphabet. From now on we denote by A either
a finite set Q or a finite group G. A graph automaton over the relational D-
magmoid R = (Rel(A), D) is a structure A = (R, A, I, E, T ) where A is a
finite set of states, I, T ∈ Rat(A∗) are the initial and final rational state word
languages and E is a finite set of transitions

E ⊆
⋃

m,n≥0

Vm(A)× Σm,n × Vn(A).

The behavior of such an automaton is obtained as follows: the doubly ranked
transition function of A

δA : Σ → Rel(A), δA(σ) = {(u, v) | (u, σ, v) ∈ E}
is uniquely extended by Theorem 3 to a morphism of D-magmoids

δ̄A : GR(Σ) →R.
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We set |A| = δ̄−1
A (F ), where F = (Fm,n) is the doubly ranked set given by

Fm,n = (I ∩ Vm(A))× (T ∩ Vn(A)).

A graph language is called recognizable whenever it is obtained as the be-
havior of a graph automaton. The class of all recognizable graph languages over
the doubly ranked alphabet Σ is denoted Rec(Σ).

The above definition clearly shows that the selection of the D-magmoid
structure plays an important role in the recognition procedure of the graph
automaton.

The first mode of recognizability we introduce is the diagonal recognizability,
obtained by virtue of the diagonal D-magmoid R∆. The class of all diagonal
recognizable graph languages, over the doubly ranked alphabet Σ, is denoted
∆-Rec(Σ).

Example 4. We recall from the introduction that Ip,q denotes the discrete (p, q)-
graph having a single node x and whose begin and end sequences are x · · ·x (p
times) and x · · ·x (q times) respectively. Notice that for all n ≥ 2 it holds

I1,n = I1,2

(
I1,n−1

E

)
= I1,2

(
E

I1,n−1

)

and similarly for In,1. Let σ ∈ Σ1,1, the graph automaton

Ap = (R∆, Q, I, E, T )

with Q = {q1, q2}, I = {q1}, T = {q2} and E = {(q1, σ, q2)}, clearly computes
the graph language Lp, consisting of the graphs:

σ, I1,2

(
σ
σ

)
I2,1, I1,3




σ
σ
σ


 I3,1, . . .

Let G be a finite, commutative group, we say that a graph language is G-
recognizable whenever it is obtained as the behavior of a graph automaton over
the group D-magmoid RG. The class of all G-recognizable graph languages,
over the doubly ranked alphabet Σ, is denoted G-Rec(Σ).

In the present paper we will mainly focus our attention in the case of Zm-
recognizable graph languages, where Zm = ({0, 1, . . . , m− 1}, +, 0) is the cyclic
group of modm integers.

Example 5. Let m ≥ 2 and σ ∈ Σ1,1, we denote by Lσ,m the graph language
consisting of all (1, 1)-graphs G in which the number of occurrences of σ in their
edges (denoted |G|σ) is a multiple of m, i.e.,

Lσ,m = {G | G ∈ GR(Σ), |G|σ = m · k, k ≥ 1}.
We construct the automaton Am = (RZm ,Zm, I, E, T ), where I = 0∗, T = 0∗

and E = {(k, σ, k + 1) | 0 ≤ k ≤ m− 1}. It is not hard to see that |Am| = Lσ,m

and thus for all m ≥ 2, the language Lσ,m is Zm-recognizable.
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7 Closure properties of recognizable graph lan-
guages

The following propositions state that the two modes of graph recognizability we
have introduced, are closed under union and intersection.

Proposition 4. If L1, L2 ∈ ∆-Rec(Σ), then L1 ∩ L2, L1 ∪ L2 ∈ ∆-Rec(Σ).

Proof. Let Ai = (R∆, Q, Ii, Ei, Ti), i = 1, 2, be two graph automata with be-
haviors |Ai| = Li, we set

E′ = {((u1, u2), σ, (v1, v2)) | (ui, σ, vi) ∈ Ei, σ ∈ Σm,n, ui ∈ Qm, vi ∈ Qn, i = 1, 2}.

It is straightforward to verify that the structures

A1 ∩ A2 = (R∆, Q×Q, I1 × I2, E
′, T1 × T2)

and
A1 ∩ A2 = (R∆, Q×Q, I1 × I2, E

′, T1 ×Q∗ ∪Q∗ × T2)

constitute two graph automata with behaviors

|A1 ∩ A2| = L1 ∩ L2 and |A1 ∪ A2| = L1 ∪ L2.

Proposition 5. Let G and H be two finite commutative groups, if L1 ∈ G-
Rec(Σ) and L2 ∈ H-Rec(Σ), then L1 ∪ L2, L1 ∩ L2 ∈ (G × H)-Rec(Σ). In
particular, if L1, L2 ∈ G-Rec(Σ) then L1 ∪ L2, L1 ∩ L2 ∈ G-Rec(Σ).

Proof. Similar with the proof of Proposition 4.

Proposition 6. Consider the canonical magmoid morphism

valΣ∪D : mag(Σ ∪D) −→ GR(Σ).

If L ⊆ GR(Σ) is a recognizable language, then val−1
Σ∪D(L) is a recognizable

pattern language.

Proof. Let A = (R, A, I, E, T ) be a graph automaton where A is either a finite
commutative group G or a finite set Q. By extending the transition function
δA : Σ → Rel(A), we get a D-magmoid morphism

δ̄A : GR(Σ) →R.

Composing δ̄A with valΣ∪D, we get the magmoid morphism

mag(Σ ∪D) valΣ∪D−→ GR(Σ) δ̄A−→ R. (1)

Therefore, the pattern automaton B = (Σ, A, I, B, T ), where B is the restriction
of (1) on Σ ∪D, recognizes val−1

Σ∪D(L), as wanted.
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Consider two doubly ranked alphabets Σ and Γ. By Theorem 3 any doubly
ranked function h : Σ → GR(Γ) can be uniquely extended into a morphism of
D-magmoids

h̄ : GR(Σ) −→ GR(Γ).

Such morphisms are called graph homomorphisms. In the case that h(Σ) ⊆
Γ, h̄ is called alphabetic.

Using a technique similar with that of the previous proposition we get the
following proposition.

Proposition 7. Let
h̄ : GR(Σ) → GR(Γ)

be a graph homomorphism, if the language L ⊆ GR(Γ) is recognizable, then
h̄−1(L) ⊆ GR(Σ) is recognizable as well.

8 Comparison of recognizability modes

Our first task is to determine a hierarchy inside the class of group recognizable
graph languages.

Theorem 4. If G and H are two finite groups and φ : G → H a group epimor-
phism, then H-Rec(Σ) ⊆ G-Rec(Σ).

Proof. First we observe that the group epimorphism φ respects the elements
D = {d, d01, d21, d10, d12} and D′ = {d′, d′01, d′21, d′10, d′12} of the D-magmoids
RG = (Rel(G), D) and RH = (Rel(H), D′), i.e., for instance we have

(q, q1q2) ∈ d12 whenever (φ(q), φ(q1)φ(q2)) ∈ d′12

and similarly for d, d01, d21 and d10.
Now given a graph language L ∈ H-Rec(Σ), let A = (RH ,H, I, E, T ) be the

automaton recognizing L. We set I ′ = φ−1(I), T ′ = φ−1(T ) and

E′ = {(s1 · · · sm, σ, r1 · · · rn) | (φ(s1) · · ·φ(sm), σ, φ(r1) · · ·φ(rn)) ∈ E, σ ∈ Σ}.

Then the graph automaton A′ = (RG, G, I ′, E′, T ′) computes the language L.

Corollary 1. Let G and H be two isomorphic finite groups, then G-Rec(Σ) =
H-Rec(Σ).

Corollary 2. Let S = ({0}, +, 0) be the trivial group, then for all finite com-
mutative groups G, it holds: S-Rec(Σ) ⊆ G-Rec(Σ).

Remark. The set GR(Σ) of all graphs over the doubly ranked alphabet Σ belongs
to the class S-Rec(Σ). Indeed let A = (RS , S, I, E, T ) be the graph automaton
over the group D-magmoidRS and the doubly ranked alphabet Σ, with I = T =
0∗ and (0m, σ, 0n) ∈ E for all σ ∈ Σm,n and m,n ≥ 0. Clearly |A| = GR(Σ).
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Corollary 3. For all finite commutative groups G and H it holds

G-Rec(Σ) ∪H-Rec(Σ) ⊆ (G×H)-Rec(Σ).

Proof. By applying the previous theorem to the epimorphisms

prG : G×H → G, prG(g, h) = g and prH : G×H → H, prH(g, h) = h

we get G-Rec(Σ) ⊆ (G×H)-Rec(Σ) and H-Rec(Σ) ⊆ (G×H)-Rec(Σ), hence

G-Rec(Σ) ∪H-Rec(Σ) ⊆ (G×H)-Rec(Σ).

Now taking into account that every finite commutative group G can be
written as a direct sum G = Zm1 ⊕ · · ·⊕Zmk

, where m1, . . . mk ≥ 2, we get the
following corollary.

Corollary 4. For every commutative group G there exist m1, . . . , mk ≥ 2, such
that

Zm1-Rec(Σ) ∪ · · · ∪ Zmk
-Rec(Σ) ⊆ G-Rec(Σ).

Proposition 8. Let 2 ≤ m ≤ n, then m | n if and only if Zm-Rec(Σ) ⊆ Zn-
Rec(Σ).

Proof. First we assume that m | n, then Zm is a subgroup of Zn and there
exists a group epimorphism φ : Zn → Zm sending each element of Zn to its
modulo m class. Hence by Theorem 4, we obtain Zm-Rec(Σ) ⊆ Zn-Rec(Σ).

Now let m - n, and consider the graph language Lσ,m ∈ GR1,1(Σ) of Example
5. As we have seen, this graph language is Zm-recognizable. Assume that it is
Zn-recognizable as well, and let A = (RZn ,Zn, I, E, T ) be a graph automaton
computing Lσ,m. If (p, σ, q) ∈ E and G ∈ |A| is a graph with k σ’s, where m | k,
then the graph

H = I1,2




I1,n




σ
...
σ


 In,1

G


 I2,1

belongs to the behavior of A, since Zn is a group of order n, and thus p+· · ·+p =
n·p = 0 and q+· · ·+q = n·q = 0. The graph H has k+n σ’s but m | k and m - n
and hence m - k + n, which is a contradiction. Therefore, Zm-Rec(Σ) * Zn-
Rec(Σ) and this concludes the proof.

The following proposition states that the two modes of graph recognizability
we have introduced are incomparable.

Proposition 9. For every m ≥ 2, the classes Zm-Rec(Σ) and ∆-Rec(Σ) are
incomparable.
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Proof. First we shall prove that, for every m ≥ 2, the languages Lσ,m of Example
5 are not diagonal recognizable. Assume that there exists a diagonal automaton
A recognizing Lσ,m and let G be a graph with m σ’s. Then the graph G′ that is
obtained by replacing one edge of G, that is labelled by σ, with the (1, 1)-graph

I1,2

(
σ
σ

)
I2,1

should also belong to the behavior of A. This is a contradiction since G′ has
m + 1 edges labelled by σ.

Now consider the graph language Lp of Example 4, we shall prove that
Lp /∈ Z2-Rec(Σ), the proof for m ≥ 2 is analogous. Assume that Lp ∈ Z2-
Rec(Σ) and let A = (RZ2 ,Z2, I, E, T ) be a graph automaton computing Lp. If
the triple (p, σ, p) ∈ E, where p = 0 or 1, then the graph σσ should also belong
to Lp, which is a contradiction. If moreover, (0, σ, 0) /∈ E, (1, σ, 1) /∈ E and the
triple (0, σ, 1) ∈ E (or (1, σ, 0) ∈ E), then since the graph

I1,2

(
σ
σ

)
I2,1 ∈ Lp

we have 0 ∈ I and 0 ∈ T , and hence the graph

I1,2

(
σ
σ

)
I2,1I1,2

(
σ
σ

)
I2,1 ∈ |A|

which is not the case.

An immediate question, that arises from the previous proposition, is whether
or not the classes ∆-Rec(Σ) and G-Rec(Σ) (where G is a finite, commutative
group) are disjoint.

Remark. The set of all S-recognizable graph languages is equal with the set
of all diagonal recognizable graph languages that are obtained as behaviors of
automata with a unitary state set.

From the previous remark and Corollary 2 we deduce that, for all finite,
commutative groups G, the intersection of ∆-Rec(Σ) and G-Rec(Σ), contains
S-Rec(Σ) and hence the two classes are not disjoint.
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