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Abstract

We associate a modal operator with each language belonging to a given class of reg-

ular tree languages and use the cascade product of tree automata to give an algebraic

characterization of the expressive power of the resulting logic.

1 Introduction

The cascade product and its semigroup theoretic variants have been very useful
and powerful tools in the characterization of the expressive power of several
logics over finite words, including first-order logic and its extension with modular
counting, [17, 24, 23], linear temporal logic and the until hierarchy, [6, 26], and
modular temporal logic, [3], to mention a few references. In this paper, our aim
is to show that the cascade product of tree automata has the same potential in
the characterization of the expressive power of various CTL-like temporal logics
on finite trees. We associate a modal operator with each language belonging
to a given class of regular tree languages and use the cascade product of tree
automata to give an algebraic characterization of the expressive power of the
resulting logic. From our general results, we deduce algebraic characterizations
of the expressive power of several specific logics on finite trees related to CTL,
cf. [20]. Some of our results are extensions of the corresponding facts for finite
words proved in [10].
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Some notation When n is a natural number, we denote the set {1, . . . , n}
by [n]. Thus, [0] is another name for the empty set. When A is a set, A∗ denotes
the set of all finite words over A including the empty word.

2 Algebras

A rank type R is a finite nonempty set of nonnegative integers. To avoid trivial
situations, we assume that each rank type contains a positive integer. A ranked
alphabet Σ of rank type R is a disjoint union of finite sets Σn, n ≥ 0, such that
for each n, Σn 6= ∅ iff n ∈ R. The elements of Σn are called letters or symbols
of rank n, or when n = 0, constant symbols.

Suppose that Σ is a ranked alphabet of rank type R. A Σ-algebra A consists
of a nonempty set A, called the carrier of A, and an operation σA : An → A,
for each σ ∈ Σn, n ≥ 0, called the interpretation of Σ. Homomorphisms,
subalgebras, congruences, direct products, etc. are defined as usual, see, e.g.,
[14]. Suppose that A = (A, (σA)σ∈Σ) is a Σ-algebra and B = (B, (δB)δ∈∆) is a
∆-algebra, where Σ and ∆ are of the same rank type. We call A a renaming of
B if A = B and for each σ ∈ Σn, n ≥ 0 there is a symbol δ ∈ ∆n with σA = δB.

We will take the liberty of writing just σ for σA whenever the algebra A
is clear from the context. We call the algebra A finite if its carrier is finite.
Sometimes we do not specify the carrier of an algebra explicitly and follow the
practice that if A,B etc. denote algebras, then A,B . . . denote the corresponding
carriers.

3 Trees and Tree Automata

Suppose that Σ is a ranked alphabet. Let x1, x2, . . . be a fixed countable se-
quence of variables, and for each n ≥ 0, let Xn denote the set {x1, . . . , xn}. The
set TΣ(Xn) of n-ary Σ-trees is defined as the least set containing Σ0 and Xn

(which are assumed to be disjoint) such that whenever t1, . . . , tm are in TΣ(Xn)
and σ ∈ Σm, then σ(t1, . . . , tm) is also in TΣ(Xn). When n = 0, we write just
TΣ. The elements of TΣ are called ground trees. Note that TΣ is nonempty
iff Σ0 is nonempty. Sometimes it is convenient to represent an n-ary tree as
a directed graph which is a rooted tree equipped with a labeling function that
maps vertices to letters in Σ ∪Xn such that the outgoing edges of each vertex
are linearly ordered. Moreover, a vertex is labeled in Σ0 ∪Xn iff it is a leaf, i.e.,
it has no successor, and is labeled in Σm for some m > 0 iff it has m immediate
successors. The label of a vertex v in a tree will be denoted t(v). The notion
of subtree of a tree t rooted at a vertex v, denoted tv, is defined as usual. The
immediate subtrees of a tree are those rooted at the immediate successors of the
root. The depth of a vertex v in a tree t is the length of the unique path from

54



the root to v, where the depth of the root is 0. The depth of a tree is the length
of the longest path in the tree.

Trees c ∈ TΣ(X1) with a single leaf labeled x1 are called contexts. A primitive
context is a context of the form σ(t1, . . . , ti−1, x1, ti+1, . . . , tn), where σ ∈ Σn,
n > 0, i ∈ [n], and t1, . . . , ti−1, ti+1, . . . , tn ∈ TΣ. Thus, a primitive context is a
context such that the leaf labeled x1 occurs at depth 1. We let CTΣ denote the
set of all contexts in TΣ(X1).

Suppose that t ∈ TΣ(Xn) and t1, . . . , tn ∈ TΣ(Xm) are trees. Then the
tree resulting from t by substituting, for each i ∈ [n], a copy of ti for each
occurrence of xi in t, is denoted t(t1, . . . , tn). Note that this tree is in TΣ(Xm).
The formal definition goes by induction on the structure of t. If t = σ ∈ Σ0,
then t(t1, . . . , tn) = σ, and if t = xi for some i ∈ [n], then t(t1, . . . , tn) = ti.
Last, if t = σ(s1, . . . , sk) with σ ∈ Σk, s1, . . . , sk ∈ TΣ(Xn), k > 0, then
t(t1, . . . , tn) = σ(s1(t1, . . . , tn), . . . , sk(t1, . . . , tn)).

If A is a Σ-algebra with carrier A and t ∈ TΣ(Xn), then t induces a function
An → A, denoted tA, or just t. The definition is standard, see, e.g., [13] or [14].
When n = 0, we identify tA with an element of A.

To simplify the treatment, our temporal logics will be tailored so that only
sets of ground trees will be definable. Accordingly, a tree language over Σ is
a set L ⊆ TΣ of ground Σ-trees. In order to avoid trivial situations, when we
speak of tree languages, we will always assume that the underlying rank type
contains 0, so that each ranked alphabet contains constant symbols.

Suppose that Σ is a ranked alphabet of rank type R with 0 ∈ R. A Σ-
tree automaton is a Σ-algebra that contains no proper subalgebras. A tree
automaton is finite if it is a finite algebra. A homomorphism of Σ-tree automata
is a Σ-algebra homomorphism. Note that if A and B are Σ-tree automata, then
there is at most one homomorphism A → B. Moreover, any homomorphism of
tree automata is a surjective function.

Let A = (A, (σA)σ∈Σ) be a tree automaton. The language accepted or recog-
nized by A with final states F ⊆ A is defined by

L(A, F ) = {t ∈ TΣ : tA ∈ F}.

A tree language L ⊆ TΣ is recognizable by the tree automaton A if L = L(A, F )
for some F ⊆ A. A tree language L ⊆ TΣ is regular if it is recognizable by a
finite tree automaton.

Each tree language L ⊆ TΣ is recognizable by a canonical tree automaton
(unique up to isomorphism), the minimal tree automaton AL of L. It has the
universal property that whenever L is recognizable by a tree automaton A then
there is a (necessarily unique) homomorphism A → AL. Thus, a language L
is regular iff its minimal tree automaton is finite. It is known that a Σ-tree
automaton A = (A, (σA)σ∈Σ) is isomorphic to the minimal tree automaton of
L ⊆ TΣ iff L = L(A, F ) for some (necessarily unique) F ⊆ A, and for any
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a, b ∈ A with a 6= b there is a context c with c(a) ∈ F and c(b) 6∈ F , or
c(a) 6∈ F and c(b) ∈ F . Thus, the languages recognizable by AL are unions of
∼L-equivalence classes, where the relation ∼L on TΣ is defined by

t ∼L t′ ⇔ ∀c ∈ CTΣ (c(t) ∈ L ⇔ c(t′) ∈ L).

In particular, L is regular iff ∼L is of finite index. For the reader’s convenience,
we include a proof of the following well-known fact.

Lemma 3.1 Suppose that L ⊆ TΣ is regular. Then every language recognizable
by AL is a boolean combination of quotients of L.

Proof. We know that the languages recognizable by AL are unions of ∼L-
equivalence classes. But each ∼L-equivalence class [t] can be written as

⋂

t∈c−1L

c−1L \
⋃

t 6∈c−1L

c−1L,

where the quotient c−1L of L with respect to c is the set of all trees t ∈ TΣ

with c(t) ∈ L. The intersection and the union in the above formula are finite
since L is regular and each language c−1L is recognizable by AL. Thus, every
∼L-equivalence class [t] and every language recognizable by AL is the boolean
combination of quotients of L. 2

Suppose that a rank type R with 0 ∈ R is fixed. By a class L of tree languages
we mean a collection of tree languages in TΣ for each ranked alphabet Σ (of rank
type R). A class of regular tree languages consists of regular languages.

Let Σ and ∆ be two ranked alphabets of the same rank type. Given a tree
t ∈ TΣ(Xn), a relabeling of t over ∆ is obtained by changing the label of each
vertex of t labeled in Σm to some symbol in ∆m, for each m ≥ 0. Labels in Xn

do not change. Different occurrences of the same letter in Σ may be replaced
by different letters. A related notion is that of a literal tree homomorphism.
Suppose that h is a rank preserving function Σ → ∆. Then for each n, h
determines a literal tree homomorphism TΣ(Xn) → T∆(Xn), also denoted h.
The image of a tree t ∈ TΣ(Xn) is obtained from t by relabeling each vertex
labeled σ ∈ Σ by the letter h(σ) (of the same rank). It is known that the class of
regular tree languages is closed under literal homomorphisms and inverse literal
homomorphisms. Thus, if L ⊆ T∆ is regular and h is a literal homomorphism
as described above, then h−1(L) = {t ∈ TΣ : h(t) ∈ L} is regular.

In addition to relabelings and literal tree homomorphisms, we will also make
use of quotients defined in the proof of Lemma 3.1. It is known that the class
of regular tree languages is closed under quotients, i.e., if L ⊆ TΣ is regular
and c ∈ CTΣ, then c−1L is regular. Moreover, a tree language L ⊆ TΣ is
regular iff it has a finite number of different quotients, i.e., when the set {c−1L :
c ∈ CTΣ} is finite. It is clear that a class L of tree languages is closed under
quotients iff it is closed under quotients with respect to primitive contexts.
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Other operations under which the class of regular languages is closed include
the boolean operations.

For the above facts and more results on tree automata and tree languages,
refer to any standard text such as [13].

4 Extended Temporal Logic

We now define our temporal logics on trees. We assume that a rank type R with
0 ∈ R is fixed and only consider ranked alphabets of rank type R. Further, we
assume that each ranked alphabet comes with a fixed lexicographic order.

Syntax. For a ranked alphabet Σ, the set of formulas over Σ is the least
set containing the letters pσ, for all σ ∈ Σ, closed with respect to the boolean
connectives ∨ (disjunction) and ¬ (negation), as well as the following construct.
Suppose that L ⊆ T∆ and that for each δ ∈ ∆, ϕδ is a formula over Σ. Then

L(δ 7→ ϕδ)δ∈∆ (1)

is a formula over Σ. The notion of subformula of a formula is defined as usual.

Semantics. Suppose that ϕ is a formula over Σ and t ∈ TΣ. We say that t
satisfies ϕ, in notation t |= ϕ, if

• ϕ = pσ, for some σ ∈ Σn, and the root of t is labeled σ, i.e., t =
σ(t1, . . . , tn), for some t1, . . . , tn, or

• ϕ = ϕ′ ∨ ϕ′′ and t |= ϕ′ or t |= ϕ′′, or

• ϕ = ¬ϕ′ and it is not the case that t |= ϕ′, or

• ϕ = L(δ 7→ ϕδ)δ∈∆, and the characteristic tree t̂ ∈ T∆ determined by t and
the family (ϕδ)δ∈∆ belongs to L. Here, t̂ has the same underlying digraph
as t, and a vertex v is labeled δ ∈ ∆n in t̂ iff v is labeled by some σ ∈ Σn in
the tree t, moreover, δ is the first in lexicographic order on ∆n such that
the subtree of t rooted at v satisfies ϕδ, i.e., tv |= ϕδ. If no such letter
exists, then δ is the last in the lexicographic order on ∆n.

For any formula ϕ of over Σ, we let Lϕ denote the language defined by ϕ:

Lϕ = {t ∈ TΣ : t |= ϕ}.
We say that formulas ϕ and ψ over Σ are equivalent if Lϕ = Lψ. Throughout the
paper we will use the boolean connectives ∧ (conjunction) and → (implication)
as abbreviations. Moreover, for any ranked alphabet Σ and n ∈ R, we define
ttn =

∨
σ∈Σn

pσ and ffn = ¬ttn. Thus, t |= ttn iff the root of t is labeled in Σn.
We further let tt = pσ ∨ ¬pσ, where σ is any letter in Σ and ff = ¬tt.

We will consider subsets of formulas associated with classes of tree languages.
When L is a class of tree languages, we let FTL(L) denote the collection of
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formulas all of whose subformulas of the form (1) above are such that L belongs
to L. We define FTL(L) to be the class of all languages definable by formulas
in FTL(L). It is clear that for each formula L(δ 7→ ϕδ)δ∈∆ in FTL(L) over an
alphabet Σ there is an equivalent formula L(δ 7→ ϕ′δ)δ∈∆ in FTL(L) over Σ such
that the subformulas ϕ′δ satisfy the following condition: There exist no t ∈ TΣ

and distinct letters δ, δ′ ∈ ∆n, for some n, such that t |= ϕ′δ ∧ϕ′δ′ . Indeed, when
the lexicographic order on ∆n is δ1 < . . . < δk, then we may define

ϕ′δi
= ϕδi

∧
∧

j<i

¬ϕδj
,

for all i ∈ [k]. Alternatively, we may define

ϕ′δi
= ttn ∧ ϕδi

∧
∧

j<i

¬ϕδj
,

for all i < k as above, and

ϕ′δk
= ttn ∧

∧

j<k

¬ϕδj
.

Thus, the modal formulas in FTL(L) over Σ associated with a language L ⊆ T∆

in L may equivalently be written as L(δ 7→ ϕδ)δ∈∆, where the family (ϕδ)δ∈∆

satisfies the following condition: For each tree t ∈ TΣ there is exactly one δ
with t |= ϕδ, and if the root of t is labeled in Σn, then this unique δ belongs
to ∆n. Below we will call such families (ϕδ)δ∈∆ deterministic. Accordingly, we
will sometimes write modal formulas over Σ associated with a language L ⊆ T∆

as L(δ 7→ ϕδ)δ∈∆, where (ϕδ)δ∈∆ is a deterministic family of formulas over Σ.
When (ϕδ)δ∈∆ is a deterministic family, we have t |= L(δ 7→ ϕδ)δ∈∆ iff there
exists a relabeling t̂ of t in L such that for all vertices v, tv |= ϕbt(v). We call a
formula ϕ deterministic if for every subformula of ϕ of the form L(δ 7→ ϕδ)δ∈∆,
the family (ϕδ)δ∈∆ is deterministic. As shown above, for each ϕ ∈ FTL(L)
there is a deterministic formula in FTL(L) which is equivalent to ϕ.

Remark 4.1 When R = {0, 1}, our logics FTL(L) are closely related to the
extended propositional linear temporal logics of [27].

Remark 4.2 Suppose that each ∆n with n ∈ R contains exactly k letters,
δ
(n)
1 , . . . , δ

(n)
k , ordered as indicated. For each i ∈ [k], let ϕi denote a formula

over Σ and let L ⊆ T∆. Then let L(δi 7→ ϕ)i∈[k] denote the formula L(δ(n)
i 7→

ϕi)i∈[k],n∈R. Thus, a tree t ∈ TΣ satisfies this formula iff the tree s ∈ T∆ is in
L, where s is obtained from t by relabeling each vertex v of t labeled in Σn by
the first letter δ

(n)
i with tv |= ϕi. When there is no such formula, then the label

of v in s is δ
(n)
k .

Each formula L(δ(n)
i 7→ ψ

(n)
i )i∈[k],n∈R is equivalent to some formula of the

above sort. Indeed, define

ϕi =
∧

i∈R

(ttn → ϕ
(n)
i ),
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for all i ∈ [k]. Then L(δ(n)
i 7→ ψ

(n)
i )i∈[k],n∈R is equivalent to L(δi 7→ ϕi)i∈[k].

Example 4.3 For each alphabet Σ, FTL(∅) consists of those languages that
are unions of languages of the form {σ(t1, . . . , tn) : t1, . . . , tn ∈ TΣ}, where
σ ∈ Σn, n ≥ 0.

Example 4.4 The boolean ranked alphabet Bool has exactly two symbols of
rank n, for each n ∈ R, the symbols ↑n and ↓n. Below we assume that the
lexicographic order on Bool satisfies ↑n<↓n, for each n ∈ R.

For each i ∈ [max(R)], let LXi denote the regular tree language of all trees
in TBool of depth ≥ 1 such that the root has n immediate successors for some
n ≥ i, and the ith immediate successor of the root is labeled by ↑m, for some
m. Then the modal operator corresponding to LXi is a sort of next modality:
When (ϕδ)δ∈Bool is a family of formulas over Σ and t ∈ TΣ, then t |= LXi

(δ 7→
ϕδ)δ∈Bool iff the root of t is labeled by some symbol in Σn with i ≤ n, and the
ith immediate subtree satisfies ϕ↑m

, where m denotes the rank of the symbol
labeling the root of this subtree. Let LX = ∪i∈[max(R)]LXi . Then t |= LX(δ 7→
ϕδ)δ∈Bool iff t is of depth ≥ 1 and the subtree of t rooted at some immediate
successor of the root vertex satisfies ϕ↑m for that m for which the successor is
labeled in Σm.

Thus, when ϕ is a fixed formula over Σ and (ϕδ)δ∈∆ is such that ϕ↑n = ϕ,
for all n ∈ R, then t |= LXi(δ 7→ ϕδ)δ∈Bool for a tree t in TΣ and i ∈ [max(R)]
iff the depth of t is at least 1 and the ith immediate subtree of t exists and
satisfies ϕ. We may denote this formula by Xiϕ. Note also that t |= LX(δ 7→
ϕδ)δ∈Bool iff some immediate subtree of t satisfies ϕ. Conversely, if (ϕδ)δ∈Bool

is any family of formulas over Σ, then LXi(δ 7→ ϕδ)δ∈Bool may be expressed as
Xi(

∧
n∈R(ttn → ϕ↑n)).

Next, let LEF ⊆ TBool denote the regular language of those trees in TBool

having at least one vertex labeled in {↑n: n ∈ R}. Then for any (ϕδ)δ∈Bool and
t as above, t |= LEF(δ 7→ ϕδ)δ∈Bool iff the subtree rooted at some vertex labeled
in Σn, for some n, satisfies ϕ↑n . Thus, the modal operator corresponding to
this language LEF is closely related to the EF modality of CTL, cf. [20]. In the
same way, the CTL-modalities AG, EG, AF are closely related to the modal
operators associated with the following languages, where we use the letter p to
range over the maximal paths of a tree, and v ranges over vertices:

LAG = {t ∈ TBool : ∀v t(v) ∈ {↑n: n ∈ R}}
LEG = {t ∈ TBool : ∃p∀v ∈ p t(v) ∈ {↑n: n ∈ R}}
LAF = {t ∈ TBool : ∀p∃v ∈ p t(v) ∈ {↑n: n ∈ R}}.

Example 4.5 Next we define tree languages such that the corresponding modal
operators are closely related to the EU and AU modalities of CTL. For this
reason, we consider the ranked alphabet Tern having three symbols for each
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n ∈ R, ↑n,∨n, ↓n, ordered as indicated. Below we will write u < v for vertices
u, v in the tree t to express that v is strictly below u, i.e., u 6= v and v is a
vertex of the subtree tu rooted at u. Let

LEU = {t ∈ TTern : ∃p∃v∀u < v (t(v) ∈ {↑n: n ∈ R} ∧ t(u) ∈ {∨n : n ∈ R})}
LAU = {t ∈ TTern : ∀p∃v∀u < v (t(v) ∈ {↑n: n ∈ R} ∧ t(u) ∈ {∨n : n ∈ R})},
where p ranges over maximal paths as above. The modal operators correspond-
ing to these languages are closely related to the EU and AU modalities of CTL.

Example 4.6 Last, we consider a version of modular counting. Let d > 1 and
r with 0 ≤ r < d be given natural numbers. Let Ld,r denote the set of all
those trees in TBool such that the number of vertices labeled in {↑n: n ∈ R}
is congruent to r modulo d. If t is a tree in TΣ and (ϕδ)δ∈Bool is a family of
formulas over Σ, then t |= Ld,r(δ 7→ ϕδ)δ∈∆ iff the number of vertices v labeled
in Σn, n ∈ R with tv |= ϕ↑n is congruent to r modulo d.

5 Basic Results

In this section, we establish some elementary properties of the classes FTL(L),
where L denotes a class of tree languages. We also study conditions on L and
L′ under which FTL(L) = FTL(L′). We again assume that a rank type R with
0 ∈ R is fixed and that all considered ranked alphabets have rank type R.

Theorem 5.1 For each class L of tree languages, FTL(L) contains L and is
closed with respect to the boolean operations and inverse literal tree homomor-
phisms.

Proof. It is obvious that FTL(L) is closed under the boolean operations. More-
over, each language L ⊆ TΣ in L is definable by the formula L(σ 7→ pσ)σ∈Σ in
FTL(L). Assume now that h : TΣ′ → TΣ is a literal tree homomorphism. We
argue by induction on the structure of the formula ϕ over Σ in FTL(L) to show
that h−1(Lϕ) is definable by some formula ψ in FTL(L). When ϕ = pσ, for
some letter σ, then we define ψ =

∨
h(σ′)=σ pσ′ . When σ is not in the range

of h then this formula is ff. It is clear that Lψ = h−1(Lϕ). Suppose now that
ϕ = ϕ1 ∨ ϕ2 and that Lψi = h−1(Lϕi), i = 1, 2. Then we define ψ = ψ1 ∨ ψ2.
When ϕ = ¬ϕ1 and Lψ1 = h−1(Lϕ1), then let ψ = ¬ψ1. In either case, we
have Lψ = h−1(Lϕ). Finally, assume that ϕ = L(δ 7→ ϕδ)δ∈∆, and that for
each δ there is a formula ψδ in FTL(L) with Lψδ

= h−1(Lϕδ
). Then define

ψ = L(δ 7→ ψδ)δ∈∆. Let t ∈ TΣ′ . Since for all δ ∈ ∆ and vertex v,

tv |= ψδ ⇔ h(tv) |= ϕδ ⇔ (h(t))v |= ϕδ,

the characteristic tree determined by t and the formulas (ψδ)δ∈∆ is the same as
that determined by h(t) and the formulas ϕδ. It follows that t |= ψ iff h(t) |= ϕ.

2
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To prove that FTL is a closure operator, we need:

Lemma 5.2 Suppose that (ϕδ)δ∈∆ is a deterministic family of formulas over
Σ and (τγ)γ∈Γ is a deterministic family of formulas over ∆. Let t ∈ TΣ and t̂
the characteristic tree determined by t and (ϕδ)δ∈∆. Let s be the characteristic
tree determined by t̂ and the family (τγ)γ∈Γ. Then s is also the characteristic
tree determined by t and the deterministic family (Lγ(δ 7→ ϕδ)δ∈∆)γ∈Γ.

Proof. First note that (Lτγ (δ 7→ ϕδ)δ∈∆)γ∈Γ is also a deterministic family.
Given a tree t ∈ TΣ, for every vertex v,

tv |= Lτs(v)(δ 7→ ϕδ)δ∈∆,

since for every vertex w in tv, tw |= ϕbt(w), and since t̂v ∈ Lτs(v) . 2

Next we show that FTL is a closure operator.

Theorem 5.3 FTL is a closure operator on language classes.

Proof. We have already seen that L ⊆ FTL(L) holds for all L. It is clear that
FTL(L1) ⊆ FTL(L2) whenever L1 ⊆ L2. Thus, to complete the proof, it suf-
fices to show that for any class L of languages, FTL(FTL(L)) = FTL(L).
The inclusion from right to left follows from Theorem 5.1. To prove that
FTL(FTL(L)) ⊆ FTL(L), we argue by induction on the structure of the for-
mula ϕ over ∆ in FTL(L) to show that for every deterministic family (ϕδ)δ∈∆

of formulas in FTL(L) over an alphabet Σ, the formula Lϕ(δ 7→ ϕδ)δ∈∆ is ex-
pressible in FTL(L), i.e., there exists a formula in FTL(L) which is equivalent
to it. Assume first that ϕ = pδ0 , for some δ0 ∈ ∆n0 . Then Lϕ is the set of
all trees in T∆ whose root is labeled δ0. It is clear that a tree t ∈ TΣ satisfies
Lϕ(δ 7→ ϕδ)δ∈∆ iff t satisfies ϕδ0 , so that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to ϕδ0 .
In the induction step, assume first that ϕ = ϕ1 ∨ ϕ2. Then Lϕ = Lϕ1 ∪ Lϕ2

and thus Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to Lϕ1(δ 7→ ϕδ)δ∈∆ ∨ Lϕ2(δ 7→ ϕδ)δ∈∆.
By induction, there exist ψ1 and ψ2 in FTL(L) such that Lϕi(δ 7→ ϕδ)δ∈∆ is
equivalent to ψi, i = 1, 2. It follows that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to ψ1∨ψ2

which is in FTL(L). Suppose next that ϕ = ¬ϕ1, so that Lϕ = Lϕ1 , the com-
plement of Lϕ1 . Then Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to ¬(Lϕ1(δ 7→ ϕδ)δ∈∆). It
follows from the induction hypothesis that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to a
formula in FTL(L). Assume finally that ϕ = K(γ 7→ τγ)γ∈Γ, where K ⊆ TΓ,
K ∈ L and the family (τγ)γ∈Γ is deterministic. Let t̂ denote the characteristic
tree determined by t and the family (ϕδ)δ∈∆, and let s denote the characteris-
tic tree determined by t̂ and the family (τγ)γ∈Γ. By Lemma 5.2, s is also the
characteristic tree determined by t and (Lγ(δ 7→ ϕδ)δ∈∆)γ∈Γ. Thus,

t |= K(γ 7→ Lτγ (δ 7→ ϕδ)δ∈∆)γ∈Γ ⇔ s ∈ K.

We have thus shown that Lϕ(δ 7→ ϕδ)δ∈∆ is equivalent to K(γ 7→ Lτγ (δ 7→
ϕδ)δ∈∆)γ∈Γ. By the induction hypothesis, for each γ there is a formula ψγ
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in FTL(L) which is equivalent to Lτγ
(δ 7→ ϕδ)δ∈∆. Thus, Lϕ(δ 7→ ϕδ)δ∈∆ is

equivalent to K(γ 7→ ψγ)γ∈Γ. 2

The language classes FTL(L) are not necessarily closed under quotients.
However, we have:

Theorem 5.4 The following conditions are equivalent for a class of tree lan-
guages L:

1. FTL(L) is closed with respect to quotients.

2. Each quotient of any language in L belongs to FTL(L).

3. For each formula L(δ 7→ ϕδ)δ∈∆ in FTL(L), over any alphabet Σ, and for
each context c over ∆ there is a formula in FTL(L) which is equivalent to
(c−1L)(δ 7→ ϕδ)δ∈∆.

4. For each formula L(δ 7→ ϕδ)δ∈∆ in FTL(L), over any alphabet Σ, and for
each primitive context c over ∆ there is a formula in FTL(L) which is
equivalent to (c−1L)(δ 7→ ϕδ)δ∈∆.

Proof. It is clear that the first condition implies the second and the third
condition implies the fourth. Moreover, the second condition implies the third
by Theorem 5.3. It remains to show that the fourth condition implies the first.
Suppose that ϕ is a formula over Σ in FTL(L) and c is a primitive context over
Σ. We show that c−1Lϕ belongs to FTL(L). It follows by a straightforward
induction argument that FTL(L) is closed under quotients with respect to any
context.

When ϕ is pσ, for a letter σ ∈ Σ, and the root of c is labeled by a letter other
than σ, then c−1Lϕ is ∅, which is definable by the formula ff. When the root of
c is labeled σ then c−1Lϕ = TΣ which is defined by the formula tt. We continue
by induction on the structure of ϕ. Suppose that ϕ = ϕ1 ∨ ϕ2 or ϕ = ¬ϕ1,
and assume that c−1Lϕi is defined by ϕ̃i in FTL(L), i = 1, 2. Then c−1Lϕ is
defined by ϕ̃1∨ ϕ̃2 or ¬ϕ̃1, respectively. Assume finally that ϕ is L(δ 7→ ϕδ)δ∈∆,
where L ⊆ T∆ and (ϕδ)δ∈∆ is a deterministic family. Suppose that the root of
c is labeled in Σn0 . Then for each δ0 ∈ ∆n0 , let cδ0 denote the context over ∆
obtained from c by relabeling its root by δ0 and any other vertex u of c labeled
in Σm, m ≥ 0 by that letter δ ∈ ∆m such that the subtree of c rooted at u
satisfies ϕδ. By the induction assumption, for any δ ∈ ∆ there exists a formula
ϕ̃δ in FTL(L) defining c−1Lϕδ

. Moreover, by assumption, for each δ0 ∈ ∆n0

there is a formula τδ0 in FTL(L) such that for all trees t ∈ TΣ,

t |= τδ0 ⇔ t |= (c−1
δ0

L)(δ 7→ ϕδ)δ∈∆.

Then let

ϕ̃ =
∨

δ0∈∆n0

(ϕ̃δ0 ∧ τδ0).
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We have, for all t ∈ TΣ,

t |= ϕ̃ ⇔ ∃δ0 ∈ ∆n0 t |= ϕ̃δ0 ∧ t |= τδ0

⇔ ∃δ0 ∈ ∆n0 c(t) |= ϕδ0 ∧ t |= (c−1
δ0

L)(δ 7→ ϕδ)δ∈∆

⇔ ∃δ0 ∈ ∆n0 c(t) |= ϕδ0 ∧ ∃s ∈ c−1
δ0

L ∀v tv |= ϕs(v)

⇔ ∃δ0 ∈ ∆n0 , s ∈ T∆ cδ0(s) ∈ L ∧ c(t) |= ϕδ0 ∧ ∀v tv |= ϕs(v)

⇔ c(t) |= L(δ 7→ ϕδ)δ∈∆

⇔ c(t) |= ϕ.

This concludes the proof of Theorem 5.4. 2

Corollary 5.5 1. For any class L of tree languages, FTL(L) = FTL(L′),
where L′ is the least class containing L closed with respect to the boolean
operations and inverse literal morphisms.

2. For any class L of tree languages closed with respect to quotients, or such
that the modal operators associated with the quotients of the languages in
L are expressible in FTL(L) as in Theorem 5.4, FTL(L) = FTL(L′),
where L′ is the least class containing L closed with respect to the boolean
operations, quotients, and inverse literal morphisms.

Suppose that K is a class of tree automata. We let LK denote the class of
all tree languages recognizable by the tree automata in K. Conversely, when L
is a class of tree languages, let KL denote the class of all minimal tree automata
of the languages in L. For each class K of tree automata, we define FTL(K) =
FTL(LK) and FTL(K) = FTL(LK).

Corollary 5.6 Let L denote a class of regular tree languages. The following
conditions are equivalent.

1. FTL(L) = FTL(KL).

2. There exists some class K of finite tree automata with FTL(L) = FTL(K).

3. There exists some class L′ of regular tree languages closed with respect to
quotients with FTL(L) = FTL(L′).

4. Each quotient of any language in L belongs to FTL(L).

5. FTL(L) is closed with respect to quotients.

6. For each L in L, the modalities associated with the quotients of L are
expressible in FTL(L) as in Theorem 5.4.

Proof. The last three conditions are equivalent by Theorem 5.4. The first
condition clearly implies the second and the second the third which in turn
implies the fourth, since for a class K of tree automata, LK is closed under
quotients. It remains to show that the fourth condition implies the first. But by
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Lemma 3.1, when L consists of regular languages, every language recognizable
by a tree automaton in KL is a boolean combination of quotients of some
language in L. It follows using Theorem 5.3 that FTL(KL) ⊆ FTL(L), while
the reverse inclusion is obvious. 2

Example 5.7 Let L be any of the languages LXi , i ∈ [max(R)], LEF, LEG,
LEU, LAF, LAG, LAU. Then each quotient of L is definable in FTL({L}). Thus,
if L is any subcollection of these languages, then the equivalent conditions of
Corollary 5.6 hold for L.

6 A Variety Theorem

Several different concepts of varieties of regular tree languages with correspond-
ing variety theorems have been proposed in the literature, cf. [1, 2, 21, 22, 9, 11].
The abundance of variety theorems is due to the fact that there exist several
different reasonable notions of homomorphisms and quotients for trees, and the
notion of syntactic algebra can be defined in several different frameworks: ordi-
nary algebras, [1, 2], [21, 22], clones or Lawvere theories, [9], or preclones, [11].
Here we present yet another variety theorem that bears close connection to that
given in [22].

In this section, all ranked alphabets are assumed to have a fixed common
rank type R containing 0. Suppose that A and B are Σ-tree automata. Since
tree automata are Σ-algebras, the direct product of A and B as an algebra is
defined. However, the direct product may not be a tree automaton since it is
not always generated by the constants. Therefore we define the tree automaton
direct product, or ta-direct product of A and B as the smallest subalgebra of the
usual direct product. The direct product of any finite number of tree automata
is defined in the same way. We have already defined renamings of algebras. This
notion gives rise to tree automaton renamings, or ta-renamings. Suppose that
A is a Σ-tree automaton and the ∆-algebra B is a renaming of A. (∆ is also of
rank type R.) Then B has a least subalgebra which is called a ta-renaming of
A.

Recall that if A and B are Σ-tree automata and h is a homomorphism A→ B,
then h is necessarily surjective. Thus we call B a quotient of A.

For the purposes of this paper, we define a (pseudo)variety of finite tree
automata to be any nonempty class of finite tree automata closed under the
ta-direct product, ta-renaming and quotients. A literal variety of tree languages
is any nonempty class of regular tree languages closed under the boolean oper-
ations, quotients and inverse literal tree homomorphisms. It is clear that both
varieties of tree automata and literal varieties form (algebraic) lattices.

The relevance of literal varieties to the logics FTL(L) is justified by the
following fact:
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Corollary 6.1 When L is a class of regular languages such that each quotient of
any language in L belongs to FTL(L) , then FTL(L) is a literal variety. Thus,
when K is a class of finite tree automata, then FTL(K) is a literal variety.

Proof. By Theorem 5.1 and Corollary 5.6. The fact that when L consists of
regular languages then FTL(L) is a class of regular languages will be established
independently in Corollary 9.9. Alternatively, one can embed FTL(L) into
monadic second-order logic and use one direction of the main result of [25] to
the effect that every language definable in this logic is regular. 2

We now state and prove a Variety Theorem that provides a basis of the
results of the paper.

Theorem 6.2 The lattice of varieties of finite tree automata is isomorphic to
the lattice of literal varieties of tree languages. An isomorphism is given by the
assignment that maps each variety V of finite tree automata to the class LV of
those tree languages recognizable by the members of V.

Proof. If V is a variety of finite tree automata then the class LV of regular
tree languages is clearly nonempty and closed under the boolean operations
(since V is closed under the direct product), quotients and inverse literal tree
homomorphisms (since V is closed under renamings). We show that every literal
variety V of tree languages corresponds to some variety of finite tree automata.
Given V, let V consist of those finite tree automata that only accept languages
in V. It is clear that V is nonempty. Since any language recognized by the ta-
direct product of two finite tree automata is a boolean combination of languages
recognized by the two tree automata, it follows that V is closed under the ta-
direct product. Since V is closed under inverse literal homomorphisms, we have
that V is closed under ta-renamings. Finally, since any language recognizable
by a quotient of a tree automaton A is recognizable by A, V is closed under
quotients. Thus, V is a variety of finite tree automata. Let W denote the literal
variety LV of all tree languages recognizable by the members of V. We want to
show that V = W. The inclusionW ⊆ V is clear. Suppose now that L ⊆ TΣ is in
V and consider the minimal tree automaton AL of L. We know from Lemma 3.1
that every language recognizable by AL is a boolean combination of quotients
of L. It follows that every language recognizable by AL is in V, so that AL ∈ V.
Thus, since L is recognizable by AL, we have L ∈ W. This proves that V ⊆ W.

Suppose that V is a variety of finite tree automata with corresponding literal
variety V. Let W denote the class of all finite tree automata that only accept
languages in V. By the above argument, we know that W is also a variety and
is mapped to V under the correspondence given in the Theorem. It is clear that
V ⊆ W. We want to show the reverse inclusion. So let A be a Σ-tree automaton
in W. For each a ∈ A, let La ⊆ TΣ denote the tree language accepted by A
with unique final state a. Now each La is in V and thus recognizable by some
tree automaton Ba in V. Let B denote the direct product of the Ba. Note that
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B ∈ V. We claim that A is a quotient of B. For each element b ∈ B there is a
tree t ∈ TΣ with b = tB = (tBa)a∈A. We map b to h(b) = tA. This map is well-
defined, for if tB = sB, for t, s ∈ TΣ, then for each a, tBa

= sBa
, so that t ∈ La iff

s ∈ La. This means that tA = sA. Since it is clear that h is a homomorphism,
A is a quotient of B, proving that A ∈ V.

To complete the proof, assume now that V1 and V2 are varieties of finite
tree automata with corresponding literal varieties V1 and V2. If V1 ⊆ V2, then
clearly V1 ⊆ V2. Assume that V1 ⊆ V2. Then since Vi consists of all finite tree
automata that only accept languages in Vi, i = 1, 2, it follows that V1 ⊆ V2.

2

Remark 6.3 Suppose that V is a variety of finite tree automata and V is the
corresponding literal variety. Then a tree language belongs to V iff its minimal
tree automaton is in V. Moreover, V is the least variety of finite automata
containing the minimal automata of the languages in V, and a tree automaton
A is in V iff every language recognizable by A is in V.

Example 6.4 The least literal variety of regular languages contains for each
ranked alphabet Σ (of rank type R) just the languages ∅ and TΣ. The corre-
sponding variety of finite tree automata is the class of all trivial, i.e., singleton
tree automata. The greatest literal variety is the class of all regular languages.
The corresponding variety of finite tree automata is the class of all finite tree
automata.

Example 6.5 For a nonnegative integer k, a tree language L ⊆ TΣ is called
k-definite if the membership of a tree t ∈ TΣ in L only depends on the cut-off of
t at depth k, i.e., on that part of the tree determined by the vertices of depth
strictly less than k. By extension, a tree language is definite if it is k-definite
for some k. For each k, let Dk denote the class of k-definite tree languages,
and let D denote the class of definite tree languages, so that D =

⋃
k≥0Dk.

Note that for every ranked alphabet Σ, the only languages over Σ contained
in D0 are ∅ and TΣ. Any 1-definite language over Σ is a union of languages
of the form Tσ = {σ(t1, . . . , tn) : t1, . . . , tn ∈ TΣ}, where σ ∈ Σn, n ≥ 0.
In general, any k-definite tree language is a union of languages of the form
Tt = {t(t1, . . . , tn) : t1, . . . , tn ∈ TΣ}, where t ∈ TΣ(Xn), n ≥ 0 is of depth < k,
moreover, each xi occurs at most (or exactly) once in t and each leaf labeled in
Xn is of depth k.

Definite tree languages were introduced in [15] and subsequently studied in
[18] and [8]. It is shown in these papers (though stated in different form) that
D and each Dk is a literal variety of tree languages. The variety of finite tree
automata corresponding to Dk can be described as follows. Call a Σ-algebra
k-definite if it satisfies all equations (in the sense of Universal Algebra, cf. [14])
t = s such that the trees t, s ∈ TΣ(Xn), n ≥ 0 agree up to depth k, i.e., s and t
have equal cut-offs at depth k. (Actually, it suffices to require this condition for
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trees of depth ≤ k.) A definite algebra is an algebra which is k-definite for some
k. A definite tree automaton (k-definite tree automaton) is a tree automaton
which is a definite algebra (k-definite algebra, resp.). We let D (Dk, resp.)
denote the class of all finite definite (k-definite, resp.) tree automata. For each
k, Dk is the variety of tree automata corresponding to Dk, moreover, D is the
variety corresponding to D. See also [9].

It is clear that there exists an algorithm to decide whether a finite algebra
is k-definite. It follows that each Dk is decidable: Given a regular tree language
L (by a finite tree automaton equipped with a set of final states), there is an
effective procedure to test whether or not L is k-definite. In [15], it is shown
that D is also decidable, see also [18] and [8].

7 The Cascade Product

Let R be a rank type kept fixed in this section. All ranked sets will be assumed
to be of rank type R.

Let A be a Σ-algebra, B a ∆-algebra, and α a family of functions αn :
An × Σn → ∆n, n ∈ R. The cascade product A ×α B determined by α is the
Σ-algebra with carrier A×B and operations

σ((a1, b1), . . . , (an, bn)) = (σ(a1, . . . , an), δ(b1, . . . , bn)),

where δ = αn(a1, . . . , an, σ), for all ((a1, b1), . . . , (an, bn)) ∈ A × B, σ ∈ Σn,
n ∈ R. When 0 ∈ R and A and B are tree automata, the ta-cascade product of A
and B determined by α is the least subalgebra of the above cascade product. We
use the same notation A×αB to denote a ta-cascade product of tree automata A
and B. The direct product is clearly a special case of the cascade product. Below
we will sometimes write just cascade product for the ta-cascade product, direct
product for the ta-direct product, etc. Note that if C is a cascade product or
ta-cascade product of A and B, then the projection C → A defined by (a, b) 7→ a
for all (a, b) ∈ C is a surjective homomorphism.

The cascade product of algebras (or tree automata) can be extended to
several factors: A1 ×α1 A2 ×α2 . . .×αn−1 An. Here, when Ai is a Σi-algebra, for
each i ∈ [n], then αi is a family of functions

(A1 × . . .×Ai−1)m × (Σ1)m → (Σi)m, m ∈ R.

Note that A1×α1 A2×α2 . . .×αn−1 An is a Σ1-algebra (or a Σ1-tree automaton).

Suppose that A is a Σ-algebra and α is a family of functions An × Σn →
∆n. Then we call the pair (A, α) a tree transducer. For each n ≥ 0, the
tree transducer (A, α) induces a mapping f : TΣ → T∆, called the relabeling
induced by (A, α). Given a tree t ∈ TΣ(Xn), f(t) is defined as follows. When
t = σ ∈ Σ0, then f(t) = α0(σ). Suppose now that t = σ(t1, . . . , tm), where
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m > 0, σ ∈ Σm and t1, . . . , tm ∈ TΣ. Then f(t) = δ(f(t1), . . . , f(tm)), where
δ = αm((t1)A, . . . , (tm)A, σ). More generally, when t ∈ TΣ(Xn) and a1, . . . , an ∈
A, n ≥ 0, we define f(a1,...,an)(t) as follows: When t = xi with i ∈ [n], then
f(a1,...,an)(t) = xi, and when t = σ ∈ Σ0, then f(a1,...,an)(t) = α0(σ). Finally,
when t = σ(t1, . . . , tm), where m > 0, σ ∈ Σm and t1, . . . , tm ∈ TΣ(Xn), then
f(a1,...,an)(t) = δ(f(a1,...,an)(t1), . . . , f(a1,...,an)(tm)), where

δ = αm((t1)A(a1, . . . , an), . . . , (tm)A(a1, . . . , an), σ).

Below we will write α(t) for f(t) and α(a1,...,an)(t) for f(a1,...,an)(t).

Proposition 7.1 Suppose that C = A×αB is a cascade product of the Σ-algebra
A and the ∆-algebra B. Then for any tree t ∈ TΣ, tC = (tA, sB), where s = α(t)
is the image of t with respect to the relabeling induced by (A, α). More generally,
for every t ∈ TΣ(Xn) and (ai, bi) ∈ A × B, i ∈ [n], tC((a1, b1), . . . , (an, bn)) =
(tA(a1, . . . , an), sB(b1, . . . , bn)), where s = α(a1,...,an)(t). A similar fact holds for
the ta-cascade product.

Proof. By a straightforward induction on the structure of t. 2

By a closed variety of finite algebras we mean a nonempty class of finite
algebras (of the same rank type R) closed with respect to the cascade product,
subalgebras, and homomorphic images. Similarly, a closed variety of finite tree
automata is any nonempty class of finite tree automata closed with respect
to the ta-cascade product and quotients. Note that any closed variety of finite
algebras is closed under renamings, and any closed variety of finite tree automata
is closed under ta-renamings. Thus any closed variety of finite tree automata is a
variety. For any class K of finite tree automata, we let K̂ denote the least closed
variety of finite tree automata containing K. Moreover, when V and W are
closed varieties of finite tree automata, then we define V∨W as the least closed
variety of finite tree automata containing both V and W, i.e., V∨W = V̂ ∪W.

Remark 7.2 Suppose that K is a nonempty class of finite algebras. It is known
(cf., e.g., [8]) that the least closed variety containing K consists of all homo-
morphic images of subalgebras of cascade products A1×α1 A2×α2 . . .×αn−1 An,
where each Ai is in K. A similar fact holds for finite tree automata: The least
closed variety of finite tree automata containing a class K of finite tree automata
consists of all quotients of ta-cascade products A1×α1 A2×α2 . . .×αn−1 An with
Ai ∈ K, for each i ∈ [n].

An example of a closed variety of finite algebras is the class of all finite
definite algebras. Let D0(R), or just D0 denote the Bool-algebra (i.e., Σ-algebra
with Σ = Bool) with carrier {0, 1} and constant valued operations

↓n (a1, . . . , an) = 0
↑n (a1, . . . , an) = 1, n ∈ R.
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Note that when 0 ∈ R, then D0 is a tree automaton. The following result was
proved in [8].

Theorem 7.3 The class of all finite definite algebras is the least closed variety
containing the algebra D0.

It follows that when 0 ∈ R, then the class D of finite definite tree automata
is a closed variety of finite tree automata and is generated by D0.

8 Definite Tree Languages, Revisited

In this section, all ranked alphabets are assumed to have a fixed rank type R
with 0 ∈ R.

We say that the next modalities are expressible in the logic FTL(L) if for
all alphabets Σ and integers i with i ∈ [max(R)], and for every formula ϕ in
FTL(L) over Σ, there exists a formula Xiϕ in FTL(L) such that for all trees
t ∈ TΣ, t |= Xiϕ iff t is of the form σ(t1, . . . , tn), where n ≥ i, and ti |= ϕ.
More generally, there is a canonical way to assign a word w in [max(R)]∗ to
every vertex of a tree t ∈ TΣ, the “address” of v (see, e.g., [18]). Given a word
w ∈ [max(R)]∗, we say that the modality Xw is expressible in FTL(L) if for
every formula ϕ in FTL(L) over any alphabet Σ there exists a formula Xwϕ
in FTL(L) such that for all trees t ∈ TΣ, t |= Xwϕ iff t has a vertex v at the
address w and the subtree tv rooted at this vertex satisfies ϕ. It is clear that
for all words w, w′ and for all formulas ϕ, XwXw′ϕ is equivalent to the formula
Xww′ϕ.

The following fact is clear.

Proposition 8.1 The following conditions are equivalent for a logic FTL(L):

1. The next modalities are expressible in FTL(L).
2. For every w, the modality Xw is expressible in FTL(L).
3. For each i ∈ [max(R)], FTL(L) contains the language LXi .

Proof. Since for each i, the formula Xi(
∨

n∈R p↑n) defines LXi over the ranked
alphabet Bool, the first condition implies the third. Moreover, since Xiϕ is
expressible as LXi(δ 7→ ψδ)δ∈Bool, where ψ↑n = ϕ and ψ↓n = ¬ϕ for all n ∈ R,
the third condition implies the first. 2

The languages LXi were defined in Example 4.4. Let LX = {LXi : i ∈
[max(R)]}. Below we denote the logic FTL(LX) by CTL(X), and the tree lan-
guage class FTL(LX) by CTL(X).

Proposition 8.2 CTL(X) = D.
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Proof. We know that each definite language over Σ is a finite union of languages
of the form Tt defined in Example 6.5. The property that a tree belongs to Tt

is clearly expressible using the Xws. For the reverse inclusion, one argues by
induction on the structure of the formula ϕ over Σ in CTL(X) to show that
Lϕ ∈ D. The base of the induction is clear. In the induction step, the case
of boolean connectives is covered by the fact that D is a literal variety and is
thus closed under the boolean operations. Finally, one proves that if (ϕδ)δ∈Bool

define definite languages, then so does the formula ϕ = LXi
(δ 7→ ϕδ)δ∈Bool, for

each i. Indeed, in this case Lϕ is the collection of all trees whose root is labeled
by a symbol of rank ≥ i such that the ith immediate subtree satisfies ϕ↑n

, where
the root of this subtree is labeled in Σn. Now if Lϕ↑n

is k-definite, then Lϕ is
(k + 1)-definite. 2

Corollary 8.3 The following conditions are equivalent for a logic FTL(L):

1. The next modalities are expressible in FTL(L).

2. For every w, the modality Xw is expressible in FTL(L).

3. LX ⊆ FTL(L).

4. D2 ⊆ FTL(L).

5. D ⊆ FTL(L).

Corollary 8.4 FTL(L) = D iff L ⊆ D and LX ⊆ FTL(L).

9 Main Results

In this section, all ranked sets are assumed to have a fixed rank type R with
0 ∈ R. In the next two propositions, let L denote a class of tree languages.

Proposition 9.1 Suppose that A and B are finite tree automata and C = A×αB
is a ta-cascade product of A and B. If every language recognizable by A or B
belongs to FTL(L), and if the next modality is expressible in FTL(L), then
every language recognizable by C also belongs to FTL(L).

Proof. Suppose that A is a Σ-tree automaton and B is a ∆-tree automaton, so
that C is a Σ-tree automaton. Let h denote the unique homomorphism TΣ → C.
It suffices to show that for each (a, b) ∈ C, the language h−1((a, b)) belongs to
FTL(L).

For every t ∈ TΣ, tC = (tA, sB), where s = α(t) is the image of t under the
relabeling induced by the tree transducer (A, α). (See Proposition 7.1.) Thus,

h−1((a, b)) = {t : tA = a ∧ sB = b}.
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By assumption, and since FTL(L) is closed under inverse literal homomor-
phisms, for each a ∈ A there exists a formula τa over Σ in FTL(L) defining the
set of trees h−1(π−1(a)), where π denotes the projection C → A, (a, b) 7→ a. For
each b ∈ B, let Tb = {s ∈ T∆ : sB = b}. We construct a (deterministic) family of
formulas (ϕδ)δ∈∆ over Σ such that for each tree t ∈ TΣ, the characteristic tree
determined by t and this family is exactly α(t). For each δ ∈ ∆n, we define:

ϕδ =
∨

αn(a1,...,an,σ)=δ

pσ ∧X1τa1 ∧ . . . ∧Xnτan
.

Given (a, b) ∈ C, let

ϕ = τa ∧ Tb(δ 7→ ϕδ)δ∈∆.

Then we have

Lϕ = {t ∈ TΣ : tA = a ∧ α(t) ∈ Tb}
= {t ∈ TΣ : tC = (a, b)}.

Since by assumption Tb is definable in FTL(L) and the next modalities are
expressible, it follows from Theorem 5.3 that there is a formula in FTL(L)
which is equivalent to ϕ. 2

Proposition 9.2 Suppose that ϕ = K(δ 7→ ϕδ)δ∈∆ is a formula over Σ in
FTL(L), where (ϕδ)δ∈∆ is a deterministic family. Suppose that K is recognizable
by B and that each Lϕδ

is recognizable by A, where A and B are possibly infinite
tree automata. Then Lϕ ⊆ TΣ is recognizable by a ta-cascade product of A and
B.

Proof. Let h denote the unique homomorphism TΣ → A and hK the unique
homomorphism T∆ → B. For each δ ∈ ∆, let Fδ denote the set h(Lϕδ

). Since
(ϕδ)δ∈∆ is a deterministic family, the sets Fδ are pairwise disjoint. For each
σ ∈ Σn and a1, . . . , an ∈ A, n ∈ R, define αn(a1, . . . , an, σ) = δ ∈ ∆n iff
σA(a1, . . . , an) ∈ Fδ. By the above remark, there is at most one such δ. To
see that there is at least one, take ti ∈ TΣ with (ti)A = ai, i ∈ [n]. Then
let t = σ(t1, . . . , tn). There exists some δ ∈ ∆n with t |= ϕδ. Therefore
σA(a1, . . . , an) = tA ∈ Fδ. Now it follows that for every t ∈ TΣ, the characteristic
tree determined by t and the family (ϕδ)δ∈∆ is exactly α(t), the image of t under
the relabeling induced by (A, α). It follows that Lϕ is recognized by C with set
of final states {(a, b) : b ∈ hK(K)}. 2

Theorem 9.3 For any class K of finite tree automata, every language in the
class FTL(K) is recognizable by some tree automaton in K̂ ∨D.

Proof. Let ϕ denote a deterministic formula over Σ in FTL(K). We show that
Lϕ is recognizable by some automaton in K̂∨D. When ϕ is pσ, for some σ ∈ Σ,

71



then Lϕ is 1-definite and thus recognizable by some automaton in D1 ⊆ D. We
proceed by induction on the structure of ϕ. Assume that ϕ = ϕ1 ∨ ϕ2 such
that Lϕi

is recognizable by Ai in K̂ ∨D, i = 1, 2. Then Lϕ is recognizable by
the ta-direct product A1 × A2 which is also in K̂ ∨D. When ϕ = ¬ϕ1, where
Lϕ1 is recognizable by A1 above, then Lϕ is also recognizable by A1. Finally,
when ϕ = L(δ 7→ ϕδ)δ∈∆ and each Lϕδ

is recognizable by some tree automaton
in K̂ ∨D, then it follows by Proposition 9.2 that Lϕ is recognizable by some
tree automaton in K̂ ∨ D. (Note that since K̂ ∨ D is closed with respect to
the direct product, we may assume without loss of generality that each Lϕδ

is
recognizable by the same tree automaton A in K̂ ∨D). 2

Remark 9.4 In the above proof, we did not use the assumption that K con-
sists of finite automata. Our argument gives that for any class K of possibly
infinite tree automata, every language in FTL(K) is recognizable by some tree
automaton in the least class of tree automata containing K and D, closed with
respect to the ta-cascade product.

Theorem 9.5 Suppose that the next modalities are expressible in FTL(K),
where K is a class of finite tree automata. Then a language L belongs to
FTL(K) iff its minimal tree automaton AL belongs to K̂ ∨ D iff L is recog-
nizable by an automaton in K̂ ∨D.

Proof. We know from Corollary 8.3 that FTL(K) contains the definite tree
languages and thus FTL(K) = FTL(K ∪D), by Theorem 5.3. Let us define
the rank of A ∈ K̂ ∨ D to be the smallest number of ta-cascade product and
quotient operations needed to generate A from K ∪D. We prove by induction
on the rank of A that every language recognizable by A is in FTL(K ∪ D).
When the rank is 0 we have A ∈ K ∪ D and the result is immediate. When
the rank of A is positive, then A is either a quotient of a tree automaton B in
K̂ ∨D of smaller rank, or A is a ta-cascade product of some tree automata in
K̂ ∨D of smaller rank. In the first case, every language recognizable by A is
recognizable by B. In the second case, the result follows from Proposition 9.1.
Conversely, by Theorem 9.3, every language in FTL(K) is recognizable by some
tree automaton in K̂ ∨D. 2

By combining Theorem 7.3 with the above result, we have:

Corollary 9.6 Suppose that the next modalities are expressible in FTL(K),
where K is a class of finite tree automata. Then a language L belongs to
FTL(K) iff its minimal tree automaton AL belongs to ̂K ∪ {D0} iff L is recog-
nizable by an automaton in ̂K ∪ {D0}.

Example 9.7 The assumption in the above result that the next modalities be
expressible in FTL(K) is important. Indeed, let K = ∅. Then FTL(K) is the
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class D1 of all 1-definite tree languages, while K̂∨D = D which corresponds to
the literal variety D of all definite tree languages that properly contains D1.

Corollary 9.8 Suppose that L is a class of regular languages such that each
quotient of any language in L belongs to FTL(L) and the next modalities are
expressible in FTL(L). Then a language L belongs to FTL(K) iff its minimal
tree automaton AL belongs to ̂KL ∪ {D0} iff L is recognizable by some automaton
in ̂KL ∪ {D0}.

Corollary 9.9 For each class L of regular tree languages, FTL(L) consists of
regular languages.

Call a nonempty class of regular tree languages L closed if FTL(L) ⊆ L
and if L is closed with respect to quotients. By Theorems 5.1 and 5.4, every
closed class is a literal variety of tree languages. Moreover, by Corollary 5.6, L
is closed iff L = FTL(L′) for a class L′ of regular tree languages closed with
respect to quotients iff L = FTL(K) for a class K of finite tree automata.

Recall that by Theorem 6.2, the assignment

V 7→ LV = {L : L is recognizable by some A ∈ V}
= {L : AL ∈ V}

defines an order isomorphism between varieties V of finite tree automata and
literal varieties V of tree languages. The inverse assignment maps a literal
variety V to the class of those finite tree automata A such that every language
recognizable by A belongs to V.

Theorem 9.10 If V is a closed variety of finite tree automata containing D,
then LV = FTL(V). Moreover, the assignment V 7→ FTL(V) defines an
order isomorphism between closed varieties V of finite tree automata containing
D and closed classes L of regular tree languages containing D.

Proof. If V is a closed variety containing D, then by Theorem 9.5 and Corol-
lary 8.3, LV = FTL(V). Moreover, FTL(V) contains D. By the Variety
Theorem, we have V1 ⊆ V2 iff LV1 ⊆ LV2 . Finally, the map is surjective,
for if L is a closed class of regular tree languages containing the definite tree
languages, then L = LV for some variety V of finite tree automata containing
D. By Proposition 9.1, V is closed with respect to the ta-cascade product, and
L = FTL(V). 2

10 Some Applications

Recall that LX denotes the set of languages {LXi , i ∈ [max(R)]}. Recall the
definitions of the languages LEF, LEG, LEU. The minimal tree automata of the
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latter three languages can be described as follows. The minimal automaton of
LEF is EF (R), which has two elements, 0, 1, and operations

↑n (b1, . . . , bn) = 1
↓n (b1, . . . , bn) = b1 ∨ . . . ∨ bn,

for all b1, . . . , bn ∈ {0, 1}, n ∈ R. The minimal automaton EG(R) of LEG also
has two elements, 0, 1. The operations are:

↑n (b1, . . . , bn) =
{

1 if n = 0
b1 ∨ . . . ∨ bn if n > 0

↓n (b1, . . . , bn) = 0,

for all b1, . . . , bn ∈ {0, 1}, n ∈ R. Finally, the minimal automaton EU (R) of
LEU is defined on the set {0, 1} by

↑n (b1, . . . , bn) = 1
∨n(b1, . . . , bn) = b1 ∨ . . . ∨ bn

↓n (b1, . . . , bn) = 0,

for all b1, . . . , bn ∈ {0, 1}, n ∈ R. Below we will just write EF ,EG,EU for the
automata EF (R),EG(R),EU (R) whenever R is understood. We define

CTL(X, EF) = FTL(LX ∪ {LEF})
CTL(X,EG) = FTL(LX ∪ {LEG})

CTL(X, EF,EG) = FTL(LX ∪ {LEF, LEG})
CTL = FTL(LX ∪ {LEU}).

By Example 5.7 and Corollary 8.3, all assumptions of Corollary 9.8 apply to the
sets of languages used in the above definitions. Note that the minimal automata
of LEF and LEG renamings of some reducts of the minimal automaton of LEU.
Thus, CTL = FTL(LX ∪ {LEF, LEG, LEU}).

Theorem 10.1 1. For Y ∈ {F, G}, a tree language belongs to CTL(X, EY)
iff its minimal tree automaton is in ̂{EY ,D0}.

2. A tree language belongs to CTL(X, EF,EG) iff its minimal tree automaton
is in ̂{EF ,EG,D0}.

3. A tree language belongs to CTL iff its minimal automaton belongs to {̂EU}.

Proof. The first two statements follow from Corollary 9.6. The third statement
follows from Corollary 9.6, Theorem 7.3, and the fact that D0 is isomorphic to
the reduct of EU obtained by forgetting about the ∨-operation. 2

Remark 10.2 The logic defining the class CTL(X,EF, EG) is closely related
to the logic introduced in [4].
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Remark 10.3 Up to renaming of the operations, EG is isomorphic to the al-
gebra on the set {0, 1} with operations

↑n (b1, . . . , bn) = 1
↓n (b1, . . . , bn) = b1 ∧ . . . ∧ bn,

for all n ∈ R.

The minimal automata of LAG, LAF and LAU are respectively isomorphic to
the minimal automata of LEF, LEG and LEU. Thus, CTL(X, EF) = FTL(LX∪
{LAG}), CTL(X, EG) = FTL(LX ∪ {LAF}), CTL(X, EF, EG) = FTL(LX ∪
{LAG, LAF}). Moreover, CTL = FTL(LX∪{LEF, LEG, LEU, LAF, LAG, LAU}) =
FTL(LX ∪ {LAF, LAG, LAU}) = FTL(LX ∪ {LAU}).

Remark 10.4 Suppose that R = {0, 1}. To each finite alphabet A let us asso-
ciate the ranked alphabet ΣA of rank type R with (ΣA)1 = A and (ΣA)0 = {#}.
We may identify each word u ∈ A∗ with a term in TΣA

. Using this identification,
the logic CTL essentially becomes LTL, propositional linear temporal logic, cf.
[20]. It follows from the above algebraic characterization of the class CTL that
a language L ⊆ A∗ is definable in LTL iff its minimal automaton belongs to the
least class of ordinary automata containing the “binary identity-reset automa-
ton”, closed under the cascade composition, subautomata, and homomorphic
images. This fact was proven in [6] (using the wreath product instead of the
cascade composition). In fact, our methods and results generalize those of [6].
The binary identity-reset automaton has two states, 0, 1, and three input letters
inducing the two constant functions and the identity function on {0, 1}, respec-
tively. Using the Krohn-Rhodes Decomposition Theorem [7], it then follows
that a language L ⊆ A∗ is definable in LTL iff its syntactic monoid is aperiodic.
Thus, by the characterization the expressive power of first-order logic on finite
words in [17], one derives Kamp’s theorem [16] to the effect that first-order logic
on finite words is equivalent to propositional linear temporal logic, see also [12].

Recall from Example 4.6 the definition of the languages Ld,r, where d > 1
and 0 ≤ r < d. The minimal tree automaton Md of Ld,r has d elements,
0, . . . , d− 1, and operations

↑n (r1, . . . , rn) = (r1 + . . . + rn + 1) mod d

↓n (r1, . . . , rn) = (r1 + . . . + rn) mod d,

for all r1, . . . , rn ∈ {0, . . . , d − 1} and n ∈ R. For each d, let Ld = {Ld,r : 0 ≤
r < d}, and let Lmod =

⋃
d>1 Ld. Define

CTL + MOD(d) = FTL(LX ∪ {LEU} ∪ Ld)
CTL + MOD = FTL(LX ∪ {LEU} ∪ Lmod).

Using Theorem 9.5, we obtain:
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Theorem 10.5 1. For every d > 1, a tree language belongs to CTL+MOD(d)
iff its minimal tree automaton is in ̂{EU ,Md}.

2. A tree language belongs to CTL+MOD iff its minimal tree automaton is
in the least closed variety containing EU and the tree automata Md, d > 1.

11 Conclusion

We have associated a modal operator with each language L of finite trees, and a
logic FTL(L) with each class L of languages of finite trees. We have shown that
several natural modal operators can be captured by suitably chosen languages.
Then, for certain classes L of regular tree languages, we reduced the problem of
the characterization of the expressive power of the logic FTL(L) to an algebraic
problem thus making it possible to study the expressive power of the logics in-
volved by the methods of algebra. This approach has been very fruitful for logics
on finite and ω-words. Our general results have many immediate applications
and we have presented some.

In order to transform the obtained concrete algebraic characterizations (e.g.,
that in Theorem 10.1) into decision procedures, one has to develop a structure
theory of finite algebras. In Part 3, we will use Theorem 10.1 to derive an effec-
tive characterization of the language class CTL(X, EF). This characterization
complements the results recently obtained in [5]. In Part 2, we will extend our
general results to finite trees such that the outgoing edges of a vertex are not
ordered.
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[11] Z. Ésik and P. Weil, On logically defined recognizable tree languages, in:
Proc. FST&TCS 03, Mumbai, LNCS 2914, Springer, 2003, 195–206.

[12] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi, On the temporal analysis of
fairness, in: Proc. 7th ACM Symp. Principles of Programming Langauges,
ACM, 1980, 163–173.

[13] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, 1984.
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