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Abstract

We consider temporal logics on finite unordered trees associated with
a class of regular tree languages and use a variant of the cascade product
to characterize the expressive power of the logic.

1 Introduction

In Part 1, cf. [2], we considered temporal logics on trees as defined in tree
automata theory, cf. [3]. Such trees are ordered, since the outgoing edges of each
vertex are equipped with a linear order. However, the tree models considered in
verification and temporal logics such as CTL are unordered. cf., e.g., [6]. In Part
2, we consider temporal logics on finite unordered trees. In our main result, we
provide an algebraic characterization of the expressive power of a wide class of
temporal logics on finite unordered trees.

We will freely use the notions and notations introduced in Part 1. When
a1, . . . , an is a finite family of elements of a set A, then we let {{a1, . . . , an}}
denote the multiset over A, where each a ∈ A appears with multiplicity

∑
ai=a 1,

the total number of occurrences of a in the family.
∗Supported in part by a grant from the National Foundation of Hungary for Scientific

Research, grant T46686.
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2 Unordered Trees

In this section, all ranked alphabets have a fixed common rank type R. We call
a Σ-algebra A commutative if it satisfies all equations

σ(x1, . . . , xn) = σ(xπ(1), . . . , xπ(n)),

for all σ ∈ Σn, n > 0, and for all permutations π : [n] → [n]. When 0 ∈ R,
a commutative Σ-tree automaton is a Σ-tree automaton which is a commuta-
tive algebra. Homomorphisms of commutative Σ-algebras (Σ-tree automata,
respectively) are Σ-algebra homomorphisms. Note that for each Σ, the class of
all commutative Σ-algebras is a Birkhoff variety, cf. [4].

We say that a tree language L ⊆ TΣ is closed under permutations, or per-
mutation closed, if for each t = t0(σ(t1. . . . , tn)) in L, where t = t0 ∈ TΣ(X1)
(or t0 ∈ CTΣ), σ ∈ Σn, n > 0 and t1, . . . , tn ∈ TΣ, and for all permutations
π : [n] → [n], if t ∈ L then t0(σ(tπ(1), . . . , tπ(n))) ∈ L. The following fact is
clear.

Proposition 2.1 Suppose that 0 ∈ R and L ⊆ TΣ. Then the following are
equivalent.

1. L is recognizable by a commutative Σ-tree automaton.

2. The minimal automaton AL is commutative.

3. L is closed under permutations.

Similarly, the following conditions are also equivalent.

1. L is recognizable by a finite commutative Σ-tree automaton.

2. The minimal automaton AL is finite and commutative.

3. L is regular and closed under permutations.

If a language is closed under permutations, then it can represented by a set
of unordered trees, defined below.

Suppose that Σ is a ranked alphabet (of rank type R) and n ≥ 0. An n-
ary unordered Σ-tree, or n-ary unordered tree over Σ, is either a letter σ ∈ Σ0,
or a variable xi in Xn, or an ordered pair (σ, {{t1, . . . , tm}}) consisting of a
letter σ ∈ Σm, m > 0 and a multiset {{t1, . . . , tm}} of n-ary unordered trees
t1, . . . , tm over Σ, denoted σ{{t1, . . . , tm}}. We let UΣ(Xn) denote the set of
all n-ary unordered Σ-trees. We may turn UΣ(Xn) into a Σ-algebra, UΣ(Xn),
by defining σUΣ(Xn)(t1, . . . , tm) = σ{{t1, . . . , tm}}, for all σ ∈ Σm, m ≥ 0 and
t1, . . . , tm ∈ UΣ(Xn). When m = 0, this tree is σ. When n = 0, we just write
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UΣ and UΣ. It is clear that the algebra UΣ is initial in the Birkhoff variety of all
Σ-algebras satisfying the commutativity laws defined above. Similarly, for each
n ≥ 0, UΣ(Xn) is freely generated by Xn in the Birkhoff variety of all Σ-algebras
satisfying the commutativity laws. Since TΣ(Xn) is freely generated by Xn in
the class of all Σ-algebras, there is a unique homomorphism TΣ(Xn) → UΣ(Xn)
which is the identity function on Xn that we denote in this section by hΣ. Note
that hΣ is surjective. (The integer n does not appear in the notation). Thus, if
t ∈ TΣ then hΣ(t) ∈ UΣ.

Each t ∈ UΣ(Xn) may be represented by a directed graph which is a rooted
tree and is equipped with a labeling function consistently mapping the set of
vertices to Σ ∪Xn. But contrary to the case of (ordered) Σ-trees, the outgoing
edges of a vertex are not ordered. When t ∈ TΣ(Xn), hΣ(t) is obtained from t by
forgetting about the order on the outgoing edges of the vertices. For unordered
trees, the notions of subtree, immediate subtree, successor of a vertex, etc. are
defined as for ordered trees. The subtree of an unordered tree t ∈ UΣ(Xn)
rooted at vertex v is denoted tv.

Suppose that 0 ∈ R and Σ is a ranked alphabet. A subset of UΣ is called an
unordered tree language. A class of unordered tree languages is any collection
L of unordered tree languages in UΣ for all ranked alphabets Σ (of rank type
R). When L is a class of (ordered) tree languages, then for each Σ, the class
h(L) contains those unordered tree languages over Σ of the form hΣ(L), where
L ⊆ TΣ is in L. Conversely, if L is a class of unordered tree languages, then
for any Σ, h−1(L) contains the languages h−1

Σ (L), for all L ⊆ UΣ, L ∈ L. Note
that h(h−1(L)) = L.

The following facts are clear.

Proposition 2.2 For each L ⊆ TΣ, h−1
Σ (hΣ(L)) is the least permutation closed

tree language containing L. Thus, L is permutation closed iff L = h−1
Σ (hΣ(L)).

Proposition 2.3 The permutation closed tree languages in TΣ form a boolean
algebra isomorphic to the boolean algebra of unordered tree languages in UΣ, an
isomorphism is given by the assignment L 7→ hΣ(L), for all permutation closed
L ⊆ TΣ. The inverse of this isomorphism is given by the map L 7→ h−1

Σ (L),
L ⊆ UΣ.

Proposition 2.4 The lattice of all classes of permutation closed tree languages
is isomorphic to the lattice of all classes of unordered tree languages, an isomor-
phism being the map L 7→ h(L), where L is a class of permutation closed ordered
tree languages. The inverse of this isomorphism maps a class L of unordered
tree languages to h−1(L).

Using Proposition 2.3, we have:
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Proposition 2.5 For each class L of unordered tree languages, L is closed
under the boolean operations iff h−1(L) is closed.

Next we treat inverse literal homomorphic images of unordered tree lan-
guages. Suppose that Σ, ∆ are ranked alphabets (of rank type R). It is clear
how to extend any rank preserving function k : ∆ → Σ to a function U∆ → UΣ,
called a literal tree homomorphism. When L ⊆ UΣ and k is a literal homo-
morphism U∆ → UΣ, we call k−1(L) the inverse image of L under the literal
homomorphism k. Recall from [2] that each rank preserving function k : ∆ → Σ
also induces a literal homomorphism T∆ → TΣ of ordered trees, denoted by the
same letter.

Proposition 2.6 For each language L ⊆ UΣ and for any rank preserving func-
tion k : ∆ → Σ, h−1

∆ (k−1(L)) = k−1(h−1
Σ (L)).

Proof. Immediate from the fact that for all t ∈ T∆, hΣ(k(t)) = k(h∆(t)). 2

Corollary 2.7 For any class L of unordered tree languages, L is closed under
inverse literal homomorphisms iff so is h−1(L).

Last, we consider quotients. Suppose that Σ is a ranked alphabet and t ∈
UΣ(X1) contains exactly one vertex labeled x1. Then for any language L ⊆ UΣ,
we define the quotient of L with respect to t to be the language t−1L = {s ∈
UΣ : t(s) ∈ L}. Here, t(s) is the tree obtained from t by substituting s for the
vertex of t labeled x1.

Lemma 2.8 For any L ⊆ UΣ, t ∈ UΣ(X1) with a single occurrence of x1, and
for any s ∈ h−1

Σ (t), h−1
Σ (t−1L) = s−1(h−1

Σ (L)). Thus, t−1L = hΣ(s−1(h−1
Σ (L))).

Proof. Use the fact that for any tree t′ ∈ TΣ, we have hΣ(s(t′)) = hΣ(s)(hΣ(t′)).
Thus,

t′ ∈ h−1
Σ (t−1(L)) ⇔ hΣ(t′) ∈ t−1(L)

⇔ t(hΣ(t′)) ∈ L

⇔ hΣ(s)(hΣ(t′)) ∈ L

⇔ hΣ(s(t′)) ∈ L

⇔ s(t′) ∈ h−1
Σ (L)

⇔ t′ ∈ s−1(h−1
Σ (L)). 2

Corollary 2.9 For any L ⊆ UΣ, t ∈ UΣ(X1) with a single occurrence of x1,
and for any s1, s2 ∈ h−1

Σ (t), s−1
1 (h−1

Σ (L)) = s−1
2 (h−1

Σ (L)).

82



Corollary 2.10 Suppose that L is a class of unordered tree languages. Let K
denote the class of all quotients of the languages in L, and K′ the class of all
quotients of the languages in h−1(L). Then h−1(K) = K′, so that K = h(K′).

By the above Corollary, if L and L′ are two classes of unordered tree lan-
guages, then L′ contains all quotients of the languages in L iff h−1(L′) contains
all quotients of the languages in h−1(L).

Corollary 2.11 A class L of unordered tree languages is closed with respect to
quotients iff h−1(L) is closed with respect to quotients.

3 Logics

Suppose that a rank type R with 0 ∈ R is fixed. We assume that each ranked
alphabet is linearly ordered.

Given a class of unordered tree languages, we define the logic FTL(L) whose
formulas over a ranked alphabet Σ are the letters pσ, for σ ∈ Σ, boolean com-
binations ¬ϕ and ϕ∨ψ, where ϕ and ψ are already formulas, and the formulas
L(δ 7→ ϕδ)δ∈∆, where L ⊆ U∆ is in L and each ϕδ is a formula in FTL(L).

Given an unordered tree t and a formula ϕ over Σ in FTL(L), we define the
satisfaction relation t |= ϕ in the same way as for ordered trees, c.f. [2]. In
particular, when ϕ = L(δ 7→ ϕδ), then t |= ϕ iff the characteristic tree t̂ ∈ U∆

determined by t and (ϕδ)δ∈∆ is in L. The characteristic tree is defined in the
same way as in the ordered case. Let ϕ be a formula over Σ in FTL(L). The
language defined by ϕ is the set Lϕ = {t ∈ UΣ : t |= ϕ}. Two formulas ϕ and
ψ are equivalent if Lϕ = Lψ. We let FTL(L) denote the class of all unordered
tree languages definable by the formulas in FTL(L).

Proposition 3.1 Suppose that L is a class of unordered tree languages. Then
h−1(FTL(L)) = FTL(h−1(L)), so that FTL(L) = h(FTL(h−1(L))).

Proof. Let ϕ be a formula over Σ in FTL(L). We argue by induction on the
structure of ϕ to define a formula h−1(ϕ) in FTL(h−1(L)) that defines the
language h−1

Σ (Lϕ). When ϕ = pσ with σ ∈ Σ0, let h−1(ϕ) = pσ. Suppose now
that ϕ = ϕ1∨ϕ1 or ϕ = ¬ϕ1. In the first case, let h−1(ϕ) = h−1(ϕ1)∨h−1(ϕ2),
and in the second, let h−1(ϕ) = ¬h−1(ϕ1). Last, suppose that ϕ = L(δ 7→
ϕδ)δ∈∆. Then we define h−1(ϕ) = h−1

∆ (L)(δ 7→ h−1(ϕδ))δ∈∆. The fact that
Lh−1(ϕ) = h−1

Σ (Lϕ) follows by noting that, by the induction hypothesis, for each
vertex v of a tree t ∈ TΣ labeled in Σn, n ≥ 0, and for each δ ∈ ∆n, tv |= h−1(ϕδ)
iff hΣ(tv) |= ϕδ. Thus, if s denotes the characteristic tree determined by t and
the family (h−1(ϕδ))δ∈∆, then h∆(s) is the characteristic tree determined by
hΣ(t) and (ϕδ)δ∈∆. We have s ∈ h−1(L) iff h(s) ∈ L, so that t |= h−1(ϕ) iff
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hΣ(t) |= ϕ. This proves that h−1(FTL(L)) ⊆ FTL(h−1(L)). Note that h−1(ϕ)
is obtained by replacing each language L in a subformula L(δ 7→ ϕδ)δ∈∆ of ϕ
by h−1

∆ (L). It is clear that every formula in FTL(h−1(L)) arises in this way:
Given a formula ϕ ∈ FTL(h−1(L)), let h(ϕ) be the formula obtained from ϕ
by replacing each language h−1

∆ (L) occurring in a subformula of ϕ by L, then
ϕ = h−1(h(ϕ)). It follows now that FTL(h−1(L)) ⊆ h−1(FTL(L)). 2

4 Closure Properties

The simple observations of the preceding sections allow us to derive the closure
properties of our logics on unordered trees from the corresponding closure prop-
erties of ordered trees. Let R be a fixed rank type with 0 ∈ R. In this section,
all ranked alphabets will be of rank type R.

Theorem 4.1 FTL is a closure operator on unordered tree language classes.

Proof. We only prove that for all classes L of unordered tree languages, it
holds that FTL(FTL(L)) = FTL(L). Using Proposition 3.1, this equal-
ity holds iff h−1(FTL(FTL(L))) = h−1(FTL(L)) iff FTL(FTL(h−1(L))) =
FTL(h−1(L)). But the last condition holds by Theorem 5.3 in [2]. 2

Theorem 4.2 For each class L of unordered tree languages, FTL(L) is closed
with respect to the boolean operations and inverse literal homomorphisms.

Proof. From Propositions 3.1, 2.5, Corollary 2.7, and Theorem 5.1 in [2]. 2

Suppose that L is a class of unordered tree languages and L ⊆ U∆. We say
that the modal operator associated with L is expressible in FTL(L) if for any
family of formulas (ϕδ)δ∈∆ in FTL(L) over some ranked alphabet Σ there exists
an FTL(L)-formula equivalent to L(δ 7→ ϕδ)δ∈∆.

Theorem 4.3 Suppose that L is a class of unordered tree languages. Then the
following conditions are equivalent.

1. Each quotient of any language in L is in FTL(L).

2. FTL(L) is closed with respect to quotients.

3. For each L ∈ L, L ⊆ UΣ, and for each t ∈ UΣ(X1) with exactly one
occurrence of x1, the modal operator associated with t−1L is expressible in
FTL(L).

4. Each quotient of any language in h−1(L) is in FTL(h−1(L)).

5. FTL(h−1(L)) is closed with respect to quotients.
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6. For each L ∈ h−1(L), L ⊆ TΣ, and for each t ∈ TΣ(X1) with exactly one
occurrence of x1, the modal operator associated with t−1L is expressible in
FTL(h−1(L)).

Proof. By Proposition 3.1 and Corollary 2.10, the first condition is equivalent to
the fourth and the second condition is equivalent to the fifth condition. More-
over, by the proof of Proposition 3.1, the third condition is equivalent to the
sixth. Finally, the last three conditions are equivalent by Theorem 5.4 in [2].

2

Below we will say that quotients are expressible in FTL(L) if for each L ∈ L,
L ⊆ UΣ, and for each t ∈ UΣ(X1) with exactly one occurrence of x1, the modal
operator associated with t−1L is expressible in FTL(L).

5 Regular Languages

In this section we define regular unordered tree languages. Let R is a fixed rank
type containing 0. We will consider ranked alphabets Σ of rank type R.

We say that an unordered tree language L ⊆ UΣ is recognizable by a commu-
tative Σ-tree automaton A if k−1(k(L)) = L holds for the unique homomorphism
k : UΣ → A.

Proposition 5.1 A language L ⊆ UΣ is recognizable by a commutative Σ-tree
automaton A iff h−1

Σ (L) is recognizable by A.

It follows that for each L ⊆ UΣ and commutative Σ-tree automaton A, L is
recognziable by A iff Ah−1

Σ (L) is a quotient of A, where A denotes the minimal

tree automaton of h−1
Σ (L). We call Ah−1

Σ (L) the minimal tree automaton of L.

Corollary 5.2 A language L ⊆ UΣ is recognizable by a finite commutative tree
automaton iff its minimal tree automaton is finite.

We call such unordered tree languages regular, or recognizable.

Corollary 5.3 A language L ⊆ UΣ is regular iff h−1
Σ (L) is regular.

Corollary 5.4 The class of regular unordered tree languages is closed under
the boolean operations, quotients, and inverse literal homomorphisms.

Proof. We know that the class of regular ordered tree languages is closed un-
der these operations. The rest follows from Proposition 2.5, Corollary 2.7 and
Corollary 2.11. 2
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Corollary 5.5 The lattice of all classes of permutation closed ordered regular
tree languages is isomorphic to the lattice of all classes of unordered regular tree
languages, an isomorphism being the map L 7→ h(L), for all classes L of per-
mutation closed ordered regular tree languages. The inverse of this isomorphism
maps a class L of unordered regular tree languages to h−1(L).

Proof. From Corollary 5.3 and Proposition 2.4. 2

6 Varieties

In this section, we again fix a rank type R and assume that all ranked alphabets
are of rank type R. Moreover, we assume that 0 ∈ R.

By the Variety Theorem of [2], there is an order isomorphism between va-
rieties of finite tree automata and literal varieties of (regular) ordered tree lan-
guages. It is easy to see that the variety Com of finite commutative tree au-
tomata corresponds to the literal variety Com of all permutation closed regular
tree languages. Thus, under this correspondence, varieties included in Com
are mapped to literal varieties included in Com, i.e., to literal varieties of per-
mutation closed tree languages. Below we will call a variety included in Com
a variety of finite commutative tree automata, and a literal variety included in
Com a commutative literal (ordered) tree language variety.

We also define literal varieties of unordered tree languages. We say that
a nonempty class L of regular unordered tree languages is a literal variety of
unordered tree languages if it is closed under the boolean operations, inverse
literal homomorphisms and quotients. In this section, our aim is to establish
a Variety Theorem that relates literal varieties of unordered tree languages to
varieties of finite commutative tree automata.

Proposition 6.1 A class L of regular unordered tree languages is a literal va-
riety iff h−1(L) is a (commutative) literal variety. Moreover, the lattice of all
commutative literal varieties of ordered tree languages is isomorphic to the lat-
tice of all literal varieties of unordered tree languages, an isomorphism being
the map L 7→ h(L), for all commutative literal varieties L of ordered tree lan-
guages. The inverse of this isomorphism maps a literal variety L of unordered
tree languages to h−1(L).

Proof. This follows from Corollary 5.5, Proposition 2.5, Corollary 2.7 and Corol-
lary 2.11. 2

Theorem 6.2 For each variety V of finite commutative tree automata, let Vu

denote the class of all unordered tree languages recognizable by the members of
V (or equivalently, whose minimal automata are in V). Then the assignment
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V 7→ Vu defines an order isomorphism between varieties of finite commutative
tree automata and literal varieties of unordered tree languages.

Proof. For every commutative variety V of finite tree automata, let V denote
the commutative literal variety of ordered tree languages corresponding to V.
By Theorem 9.10 in [2], the assignment V 7→ V is an order isomorphism from
the lattice of varieties of finite commutative tree automata onto the lattice of
commutative literal varieties of tree languages. To complete the proof, note
that by Proposition 6.1, the lattice of commutative literal varieties of ordered
tree languages is isomorphic to the lattice of literal varieties of unordered tree
languages, and that an isomorphism is given by the mapping V 7→ h(V), for all
commutative literal varieties V of ordered tree languages. The composite of the
two isomorphisms is the required isomorphism. 2

Below we will write Lu
V for the literal variety Vu corresponding to V.

7 Commutative Cascade Product

In this section, let R denote a fixed rank type which may or may not contain 0.
We will consider both algebras and tree automata (of rank type R). Whenever
we mention tree automata, we assume implicitly that 0 ∈ R.

The variety Com of finite commutative tree automata is not closed under the
cascade product. However, it is closed under the commutative cascade product
defined below.

Suppose that A is a Σ-algebra and B is a ∆-algebra, where Σ and ∆ are
of rank type R. Moreover, suppose that for each n ∈ R, αn is a mapping
nA × Σn → ∆n, where nA denotes the set of all multisets {{a1, . . . , an}} of
elements of A. Then the commutative cascade product C = A×α B determined
by the family α = (αn)n∈R is the following Σ-algebra. The carrier of C is the
set C = A × B. Moreover, for each σ ∈ Σn, n ≥ 0, and for each (ai, bi) ∈ C,
i ∈ [n],

σC((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), δB(b1, . . . , bn)),

where δ = αn({{a1, . . . , an}}, σ). Note that each commutative cascade product
may be ragarded as a cascade product. Conversely, a cascade product A ×α B
of a Σ-algebra A and a ∆-algebra B such that for each n ∈ R the function
αn(a1, . . . , an, σ) depends only on Σ and the multiset {{a1, . . . , an}} may be
regarded as a commutative cascade product of A and B. The commutative
cascade product can be generalized to several factors. When Ai is a Σ(i)-algebra
for each i ∈ [n], n ≥ 1, and for each j ∈ [n− 1], αj is a family of functions

m(A1 × . . .×Aj)× Σ(1)
m → Σ(j+1)

m , m ∈ R,

then the commutative cascade product of the Ai determined by the functions
αj is denoted A1×α1 . . .×αn−1An. Any such commutative cascade product may
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also be specified by functions (A1× . . .×Aj)m×Σ(1)
m → Σ(j+1)

m , m ∈ R, subject
to certain conditions.

Suppose that 0 ∈ R and A and B are tree automata, and let α be a fam-
ily of functions as above. The commutative (ta-)cascade product of A and B
determined by α is the least subalgebra of the the above commutative cascade
product. It will be denoted by A ×α B. The commutative ta-cascade product
A1 ×α1 . . .×αn−1 An of tree automata Ai, i ∈ [n] is defined in the same way.

Below we will write just commutative cascade product for the commutative
ta-cascade product.

Proposition 7.1 Any commutative cascade product of commutative algebras is
commutative.

Proof. Suppose that C = A ×α B is a commutative cascade product of the
commutative Σ-algebra A and the commutative ∆-algebra B. Then for all
(ai, bi) ∈ C, i ∈ [n], and for all permutations π : [n] → [n],

σC((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), δB(b1, . . . , bn))
= (σA(aπ(1), . . . , aπ(n)), δB(bπ(1), . . . , bπ(n)))
= σC((aπ(1), bπ(1)), . . . , (aπ(n), bπ(n))),

where δ = αn({{a1, . . . , an}}, σ) = αn({{aπ(1), . . . , aπ(n)}}, σ). 2

Thus, any commutative ta-cascade product of commutative tree automata
is a commutative tree automaton. We call a nonempty class of finite commuta-
tive algebras a commutative closed variety if it is closed under the commutative
cascade product, subalgebras and quotients. Similarly, a nonempty class of fi-
nite commutative tree automata is a commutative closed variety of finite tree
automata if it is closed under the commutative cascade product and quotients.
Note that any commutative closed variety of finite algebras or finite tree au-
tomata is closed under the direct product and renaming and is thus a variety.
By the above Proposition, Com is a commutative closed variety of finite tree
automata, the largest commutative closed variety. Similarly, the class of all
finite commutative algebras is the largest commutative closed variety of finite
algebras.

Remark 7.2 Note that a commutative closed variety of finite algebras or finite
tree automata may not be a closed variety as defined in [2], since it is not
necessarily closed under the cascade product.

Remark 7.3 Suppose that K is a class of finite commutative algebras. Then
the least commutative closed variety of finite algebras containing K is the class of
all quotients of subalgebras of commutative cascade products A1×α1 . . .×αn An

of algebras in K. A similar fact is true for commutative closed varieties of finite
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tree automata: The least commutative closed variety of finite tree automata
containing a class K of finite commutative tree automata is the class of all
quotients of commutative cascade products A1×α1 . . .×αn

An of tree automata
in K.

We want to show that any commutative closed variety of finite algebras is
the intersection of a closed variety of finite algebras with the class of all finite
commutative algebras, and similarly for finite tree automata. In our argument,
we will make use of Propositions 7.4 and 7.5.

Proposition 7.4 Suppose that A,B are Σ-algebras such that B is commutative.
Suppose that for each n, An is equipped with a linear order. Define the Σ-
algebra A′ on the set A as follows: For each σ ∈ Σn and a1, . . . , an ∈ A,
n ≥ 0, σA′(a1, . . . , an) = σA(aπ(1), . . . , aπ(n)), where π is a permutation [n] → [n]
for which (aπ(1), . . . , aπ(n)) is the least in the linear order among the vectors
(b1, . . . , bn) ∈ An with {{b1, . . . , bn}} = {{a1, . . . , an}}. If B is a quotient of a
subalgebra of A then it is also a quotient of a subalgebra of A′.

Proof. Suppose that C is a subalgebra of A and f is a homomorphism C→ B.
Then the carrier C of C determines a subalgebra C′ of A′. Moreover, f is a
homomorphism C′ → B. Indeed, suppose that σ ∈ Σn and a1, . . . , an ∈ C,
n ≥ 0. Let π denote a permutation [n] → [n] described above. Then we have

σC′(a1, . . . , an) = σC(aπ(1), . . . , aπ(n)) ∈ C,

and

f(σC′(a1, . . . , an)) = f(σC(aπ(1), . . . , aπ(n)))
= σB(f(aπ(1)), . . . , f(aπ(n)))
= σB(f(a1), . . . , f(an)),

where the last line follows from the commutativity of B. 2

Proposition 7.5 Suppose that Ai is a commutative Σ(i)-algebra for i ∈ [n],
and consider a cascade product A = A1 ×α1 × . . . ×αn−1 An. If a commutative
Σ(1)-algebra B is a homomorphic image of a subalgebra of A, then there exists
a commutative cascade product A′ = A1 ×α′1 × . . . ×α′n−1

An such that B is a
homomorphic image of a subalgebra of A′.

Proof. Let us equip each Ai with a linear order ≤i and let us order each A1 ×
. . .×Aj , j ∈ [n] lexicographically by (a1, . . . , aj) ≤ (b1, . . . , bj) iff (a1, . . . , aj) =
(b1, . . . , bj) or there exists some i ∈ [j] such that a1 = b1, . . . , ai−1 = bi−1 and
ai < bi. We define the commutative cascade product A′ = A1×α′1× . . .×α′n−1

An

by specifying the functions α′jm, j ∈ [n− 1],m ∈ R as functions

(A1 × . . .×Aj)m × Σ(1)
m → Σ(j+1)

m .
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Given (a11, . . . , aj1), . . . , (a1m, . . . , ajm) in A1 × . . .×Aj and σ ∈ Σ(1)
m , define

α′jm((a11, . . . , aj1), . . . , (a1m, . . . , ajm), σ) =
= αjm((a1π(1), . . . , ajπ(1)), . . . , (a1π(m), . . . , ajπ(m)), σ),

where the permutation π : [m] → [m] satisfies (a1π(1), . . . , ajπ(1)) ≤ . . . ≤
(a1π(m), . . . , ajπ(m)). The fact that A′ also contains a subalgebra that can be
mapped homomorphically onto B follows from Proposition 7.4. To see this, let
us order each (A1× . . .×An)m, m ∈ R by lexicographically extending the order
on A1 × . . . × An. Then, with respect to this order, for each σ ∈ Σ(1)

m , the
operations σA and σA′ are related exactly as in Proposition 7.4, i.e.,

σA′((a11. . . . , an1), . . . , (a1m, . . . , anm)) =
= σA((a1π(1), . . . , anπ(1)), . . . , (a1π(m), . . . , anπ(m))),

for all aij ∈ Ai, i ∈ [n], j ∈ [m], where π is a permutation with

(a1π(1), . . . , anπ(1)) ≤ . . . ≤ (a1π(m), . . . , anπ(m)).

Indeed, for each i ∈ [n], the ith component of the left side of the equation
is σ′Ai

(ai1, . . . , aim) and the ith component of the right side of the equation is
σ′Ai

(aiπ(1), . . . , aiπ(m)), where

σ′ = α((a1π(1), . . . , a(i−1)π(1)), . . . , (a1π(m), . . . , a(i−1)π(m))).

But σ′Ai
(ai1, . . . , aim) = σ′Ai

(aiπ(1), . . . , aiπ(m)) due to the commutativity of Ai.
The proof is completed by applying Proposition 7.4. 2

Theorem 7.6 Suppose that K is a class of commutative finite algebras. Then
the least commutative closed variety containing K is the class of all commutative
algebras in the least closed variety containing K.

Proof. Let V denote the least commutative closed variety containing K, and
let W denote the least closed variety containing K. Since V ⊆ W and V
is included in the variety of all finite commutative algebras, V is included in
the intersection of W with the variety of all finite commutative algebras. To
prove the reverse inclusion, assume that A is commutative and belongs to W.
Then A is a quotient of a subalgebra of a cascade product of some algebras
Ai in K, i ∈ [n], n ≥ 1. By the previous proposition, A is a quotient of a
subalgebra of a commutative cascade product of the Ai. Since V is closed
under the commutative cascade product, it follows that A ∈ V. 2

Corollary 7.7 Suppose that 0 ∈ R and K is a class of commutative finite tree
automata. Then the least commutative closed variety of finite tree automata
containing K is the class of all commutative tree automata in the least closed
variety of finite tree automata containing K.
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Corollary 7.8 A class K of finite algebras is a commutative closed variety iff
there exists a closed variety W of finite algebras such that V is the class of all
commutative algebras in W. Similarly, when 0 ∈ R, then a class K of finite
tree automata is a commutative closed variety iff there exists a closed variety
W of finite tree automata such that V = W ∩Com.

8 Commutative Definite Languages

In this section we assume that R is a fixed rank type with 0 ∈ R.

Let L denote a class of unordered tree languages. We say that the next
modalities are expressible in FTL(L) if for each i ∈ [max(R)] and formula ϕ ∈
FTL(L) over any ranked alphabet Σ, there exists a formula X=iϕ such that for
any tree t ∈ UΣ, t |= X=iϕ iff t has exactly i immediate subtrees satisfying ϕ.
(Thus, the root of t is labeled in Σn for some n ≥ i.)

Proposition 8.1 Suppose that L is a class of unordered tree languages. The
following conditions are equivalent.

1. The next modalities are expressible in FTL(L).

2. For each 1 ≤ i ≤ max(R) and formula ϕ ∈ FTL(L) over any ranked
alphabet Σ, there exists a formula X<iϕ such that for any tree t ∈ UΣ,
t |= X<iϕ iff t has < i immediate subtrees satisfying ϕ.

3. For each 0 ≤ i ≤ max(R) − 1 and formula ϕ ∈ FTL(L) over any ranked
alphabet Σ, there exists a formula X≤iϕ such that for any tree t ∈ UΣ,
t |= X≤iϕ iff t has ≤ i immediate subtrees satisfying ϕ.

Proof. Assume first that the next modalities are expressible in FTL(L). Then
the formula

X=0ϕ = ¬(X=1ϕ ∨ . . . ∨X=max(R)ϕ)

asserts that a tree has no immediate subtree satisfying ϕ. And for every 1 ≤
i ≤ max(R), X<iϕ can be expressed as

∨i−1
j=0 X=jϕ. This proves that the first

condition implies the second. The fact that the second condition implies the
third follows by noting that for each 0 ≤ i ≤ max(R) − 1 and ϕ, X≤iϕ is
equivalent to X<i+1ϕ. Last, assume that the third condition holds. Then for
every 1 ≤ i ≤ max(R), X=iϕ can be expressed as X≤iϕ ∧ ¬(X≤i−1ϕ), for all
i < max(R), and ¬X≤i−1ϕ, if i = max(R). 2

Proposition 8.2 Suppose that L is a class of unordered tree languages such
that the next modalities are expressible in FTL(L). Then for each n ∈ R,
n > 0 and for any formulas ϕ1, . . . , ϕn in FTL(L) over some ranked alphabet
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Σ there exists a formula X{{ϕ1, . . . , ϕn}} in FTL(L) over Σ, depending only on
the multiset {{ϕ1, . . . , ϕn}}, such that for all trees t ∈ UΣ, t |= X{{ϕ1, . . . , ϕn}}
iff the root of t is labeled in Σn and its n immediate subtrees satisfy the formulas
ϕ1, . . . , ϕn in some order.

Proof. That the root of a tree is labeled in Σn is expressible by the formula∨
σ∈Σn

pσ = ttn. Since the boolean connectives are available in the language, we
may as well assume that any two of the ϕi are either (syntactically) equal or
inconsistent: no tree satisfies both of them. So let us assume that the sequence
ϕ1, . . . , ϕn contains m1 copies of ψ1, . . . , mk copies of ψk, where m1, . . . , mk > 0,
m1 + . . . + mk = n, and that any two of the formulas ψj are inconsistent. Then
the property formulated in the Proposition can be expressed as

ttn ∧
∧

j∈[k]

X=mj ψj . 2

Call a language L ⊆ UΣ k-definite, for some integer k ≥ 0, if for all unordered
trees s, t in UΣ such that the cut off of s at depth k agrees with the cut off of
t at depth k, it holds that s ∈ L iff t ∈ L. Moreover, call L ⊆ UΣ definite if it
is k-definite for some k ≥ 0. Let UD denote the class of all definite unordered
tree languages (of rank type R), and for each k ≥ 0, let UDk denote the class
of all k-definite unordered tree languages. Thus, UD =

⋃
k≥0 UDk.

For example, the following languages LX=i ⊆ UBool, i ∈ [max(R)] are 2-
definite: A tree t ∈ UBool belongs to LX=i iff its root is labeled in Booln for some
n ≥ i and has exactly i immediate successors labeled in the set {↑m: m ∈ R}.
Let LUX denote the collection of all these languages LX=i .

Proposition 8.3 The following conditions are equivalent for a class L of un-
ordered tree languages.

1. The next modalities are expressible in FTL(L).

2. LUX ⊆ FTL(L).

3. UD2 ⊆ FTL(L).

4. UD ⊆ FTL(L).

Proof. The fourth condition clearly implies the third which in turn implies the
second. The second condition is equivalent to the first, since a tree satisfies a
formula X=iϕ iff it satisfies LX=i(δ 7→ ψδ)δ∈Bool, where ψδ = ϕ if δ ∈ {↑m: m ∈
R} and ψδ = ¬ϕ otherwise. Moreover, for any deterministic family (ϕδ)δ∈∆,
LX=i(δ 7→ ϕδ)δ∈Bool is expressible as X=iψ, where ψ =

∧
n∈R(ttn → ϕ↑n).

Thus, it remains to show that the first condition implies the fourth. So
suppose that the next modalities are expressible in FTL(L). We show by in-
duction on k that UDk ⊆ FTL(L). When k = 0 this is clear, since for each
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Σ, UD0 contains two languages over an alphabet Σ: ∅ and UΣ. Suppose that
k > 0. Then any language in UDk is a finite union of languages σ{{L1, . . . , Ln}}
consisting of all trees whose root is labeled σ, for some σ ∈ Σn, n ≥ 0, and
whose immediate subtrees are, in some order, in the (k − 1)-definite languages
L1, . . . , Ln. By induction, each Li is definable by some ϕi in FTL(L). Thus,
σ(L1, . . . , Ln) is definable by the formula pσ ∧X{{ϕ1, . . . , ϕn}}. The result now
follows from Proposition 8.2. 2

Recall from [2] that D denotes the closed variety of all finite definite tree
automata, and for each k ≥ 0, Dk is the variety of all finite k-definite tree
automata. The corresponding literal varieties of ordered tree languages are
respectively D and Dk, k ≥ 0. Recall that Com denotes the variety of finite
commutative tree automata and Com denotes the commutative literal variety
of all permutation closed tree languages. Let us denote CD = Com ∩ D,
CD = Com∩D, and let CDk = Com∩Dk, CDk = Com∩Dk for all k ≥ 0. It is
clear that CD, and each CDk, is a variety of finite commutative tree automata,
and CD and CDk are the corresponding commutative literal varieties of ordered
tree languages. The following fact is clear.

Proposition 8.4 h−1(UD) = CD and h−1(UDk) = CDk, for all k ≥ 0.

Corollary 8.5 UD is a literal variety of unordered tree languages, the literal
variety corresponding to CD. Similarly, for each k ≥ 0, UDk is the literal
variety of unordered tree languages corresponding to CDk.

Corollary 8.6 For each class L of unordered tree languages, the next modalities
are expressible in FTL(L) iff the next modalities are expressible in FTL(h−1(L)).

Proof. By Proposition 8.3, the next modalities are expressible in FTL(L) iff
UD ⊆ FTL(L). By Proposition 8.4, this is further equivalent to the condition
that D ⊆ FTL(h−1(L)). Last, by Corollary 8.3 in [2], this holds iff the next
modalities are expressible in FTL(h−1(L)). 2

As in [2], let D0 denote the two element Bool-algebra on the set {0, 1} with
the operations

↑n (a1, . . . , an) = 1
↓n (a1, . . . , an) = 0, n ∈ R.

As an application of Corollary 7.7 we now show:

Proposition 8.7 CD is a commutative closed variety of finite tree automata
and is generated by D0.

Proof. It was shown in [1] that D is the least closed variety of finite tree
automata containing D0. Since D0 is commutative, it follows from Corollary 7.7
that CD is the commutative closed variety of finite tree automata generated by
D0. 2
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9 Expressiveness

The results of this section provide an algebraic charactrization of the expres-
sive power of the logics FTL(L), where L is a class of regular unordered tree
languages satisfying certain natural conditions.

Theorem 9.1 Suppose that L is a class of regular unordered tree languages
such that quotients and the next modalities are expressible in FTL(L). Then an
unordered tree language L ⊆ UΣ is in FTL(L) iff its minimal automaton AL

belongs to the least commutative closed variety containing D0 and the minimal
automata of the languages in L.

Proof. We know from Proposition 3.1 that L ∈ FTL(L) iff h−1
Σ (L) ∈ FTL(h−1(L)).

By Corollary 8.6, since the next modalities are expressible in FTL(L), they
are expressible in FTL(h−1(L)). Moreover, since quotients are expressible in
FTL(L), they are expressible in FTL(h−1(L)). Thus, Corollary 9.6 in [2],
L ∈ FTL(L) iff Ah−1

Σ (L) belongs to the least closed variety of finite tree au-
tomata containing D0 and the minimal automata of the ordered tree languages
in h−1

Σ (L). Note that for each L, the minimal automaton Ah−1
Σ (L) of h−1

Σ (L)
is just the minimal automaton AL of L. Moreover, the minimal automaton of
each L ∈ L is commutative as is the automaton D0. Thus, by Theorem 7.6, the
class of commutative tree automata in the least closed variety containing D0

and the automata AL, L ∈ L is just the least commutative closed variety of fi-
nite tree automata containing these tree automata. In conclusion, L ∈ FTL(L)
iff its minimal automaton AL belongs to the least commutative closed variety
containing D0 and the minimal automata of the languages in L. 2

Suppose that K is a class of finite commutative automata. Then we let Lu
K

denote the class of all unordered tree languages recognizable by the members of
K. We define FTLu(K) to be the logic FTL(Lu

K) and FTLu(K) = FTL(LK).

Corollary 9.2 Suppose that K is a class of finite commutative tree automata
such that the next modalities are expressible in rFTLu(K). Then an unordered
tree language L ⊆ UΣ is in FTLu(K) iff its minimal automaton AL belongs to
the least commutative closed variety containing D0 and K.

Proof. Clearly, Lu
K is closed under quotients and thus, by Theorem 4.3, quotients

are expressible in FTLu(K). The rest follows from Theorem 9.1. 2

We call a class of regular unordered tree languages L closed if L is closed
under quotients and if FTL(L) ⊆ L.

Theorem 9.3 Let V a commutative closed variety of finite tree automata con-
taining CD. Then FTLu(V) = LV. Moreover, the assignment V 7→ FTLu(V)
defines an order isomorphism between commutative closed varieties of finite tree
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automata containing CD and closed classes of unordered tree languages contain-
ing the CD.

Proof. Suppose that V is a commutative closed variety containing CD. By
Corollary 9.2 and Proposition 8.3, FTLu(V) is the class of all unordered tree
languages whose minimal automata belong to V, i.e., FTLu(V) = Lu

V. It
is clear that Lu

V contains CD. The rest follows from the Variety Theorem,
Theorem 6.2. 2

10 Applications

In this section, we again assume that R is a rank type containing 0. The set of
languages LUX was defined in Section 8. Recall the definitions of the languages
LEF, LEG, LEU from [2], and let Lu

EF = hBool(LEF), Lu
EG = hBool(LEG), Lu

EU =
hBool(LEU). Since the languages LEF, LEG, LEU are all permutation closed, the
minimal automata for these languages are respectively the minimal automata
for Lu

EF, Lu
EG, Lu

EU. Recall from [2] that these automata are denoted by EF ,
EG, and EU . Define

CTLu(X, EF) = FTL(LUX ∪ {Lu
EF})

CTLu(X,EG) = FTL(LUX ∪ {Lu
EG})

CTLu(X, EF,EG) = FTL(LUX ∪ {Lu
EF, Lu

EG})
CTLu = FTL(LUX ∪ {Lu

EU}).
From Corollary 9.2, we obtain:

Theorem 10.1 1. For Y ∈ {F, G}, an unordered tree language belongs to
CTLu(X, EY) iff its minimal tree automaton is in the least commutative
closed variety of finite tree automata containing D0 and EY .

2. An unordered tree language belongs to CTLu(X, EF,EG) iff its minimal
tree automaton is in the least commutative closed variety containing D0,
EF and EG.

3. An unordered tree language belongs to CTLu iff its minimal automaton
belongs to the commutative closed variety generated by EU .

Recall from Example 4.4 in [2] the definition of the languages Ld,r, where d >
1 and 0 ≤ r < d, and the definition of the corresponding minimal automata Md,
d > 1. Note that each Md is commutative. For each d, let Lu

d = {hBool(Ld,r) :
0 ≤ r < d}, and let Lu

mod =
⋃

d>1 Lu
d . Define

CTLu + MOD(d) = FTL(LUX ∪ {Lu
EU} ∪ Lu

d)
CTLu + MOD = FTL(LUX ∪ {Lu

EU} ∪ Lu
mod).

Using Corollary 9.2, we obtain:
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Theorem 10.2 1. For every d > 1, an unordered tree language belongs to
CTLu + MOD(d) iff its minimal tree automaton is in the commutative
closed variety generated by EU and Md.

2. An unordered tree language belongs to CTLu +MOD iff its minimal tree
automaton is in the least commutative closed variety containing EU and
the tree automata Md, d > 1.

11 Idempotence

In this section, we consider yet another variant of temporal logics on trees. Call
an algebra A of rank type R idempotent if it is commutative and satisfies the
equations

σ(x1, . . . , xm, x1, . . . , x1) = σ(x1, . . . , xm, x2, . . . , x2),

for all 2 ≤ m < n and σ ∈ Σn. In such algebras A, the result of an operation
only depends on the set of its arguments, i.e.,

σ(a1, . . . , an) = σ(b1, . . . , bn)

whenever {a1, . . . , an} and {b1, . . . , bn} are equal subsets of A and σ ∈ Σn. We
call a tree automaton idempotent if it is an idempotent algebra.

Example 11.1 The tree automata EEF,EEG,EEU defined in [2] are idempo-
tent.

In our next result, which provides a characterization of tree languages recog-
nizable by idempotent tree automata, we make use of a congruence relation ∼
on UΣ. For any s, t ∈ UΣ, we define s ∼ t iff s = t ∈ Σ0 or s = σ{{s1, . . . , sn}},
t = σ{{t1, . . . , tn}}, where σ ∈ Σn and si, ti ∈ UΣ, for all i ∈ [n], and for every
i ∈ [n] there is a j ∈ [n] with si ∼ ti, and vice versa.

Proposition 11.2 The relation ∼ is the least congruence relation on UΣ such
that the quotient algebra IΣ = UΣ/ ∼ is idempotent.

Proof. First, for any σ ∈ Σm+n with m ≥ 2 and n ≥ 1 and unordered
trees t1, . . . , tm, let s1 = t1, . . . , sm = tm, sm+1 = t1, . . . , sm+n = t1 and s′1 =
t1, . . . , s

′
m = tm, s′m+1 = t2, . . . , s

′
m+n = t2. Then for each i ∈ [m + n] there

exists a j ∈ [m + n] with si = tj , and vice versa. Thus,

σ(s1, . . . , sm+n) ∼ σ(s′1, . . . , s
′
m+n).

Suppose now that ≈ is any congruence relation of UΣ such that UΣ/ ≈ is idem-
potent. Assume that s ∼ t. It is clear that s and t have, up to isomorphism, the
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same underlying directed graph and the same labeling. We show by induction
on the structure of t that s ≈ t. When s ∈ Σ0 then s = t, thus s ≈ t. Assume
that s = σ{{s1, . . . , sn}}, for some σ ∈ Σn, s1, . . . , sn ∈ UΣ. Since s ∼ t, we have
s = σ{{t1, . . . , tn}} for some t1, . . . , tn ∈ UΣ such that for every i ∈ [n] there
exists j ∈ [n] with si ∼ tj and vice versa. Since ∼ is included in ≈, it follows
that for every i ∈ [n] there exists j ∈ [n] with si ≈ tj and vice versa. Now, since
UΣ/ ≈ is idempotent, it follows that s ≈ t. 2

Remark 11.3 Suppose that s, t are in UΣ with underlying sets of vertices Vs

and Vt and roots rs and rt, respectively. Call a relation R ⊆ Vs × Vt a bisim-
ulation between s and t if rsRrt, and if for every pair of vertices u ∈ Vs and
v ∈ Vt, if uRv then u and v are labeled by the same letter, moreover, for each
successor u′ of u there is a successor v′ of v with u′Rv′, and vice versa. Then
the relation ∼ defined above is a bisimulation. Moreover, it can be proved that
s ∼ t iff there is a bisimulation R between s and t.

The definition of bisimulation is motivated by [5].

Corollary 11.4 IΣ is the initial idempotent algebra.

Using this fact, we immediately have:

Proposition 11.5 A tree language L ⊆ UΣ is recognizable by an idempotent
algebra iff it is saturated by ∼, i.e., s ∼ t and s ∈ L implies that t ∈ L.
Moreover, L is recognizable by a finite idempotent algebra iff it is regular and is
saturated by ∼.

Idempotent tree automata form a variety of finite tree automata included in
the variety of finite commutative tree automata that we denote below by Idem.
The corresponding literal variety of unordered tree languages will be denoted
by Idem: it consists of all regular tree languages that are saturated by ∼. We
call Idem the class of all idempotent regular unordered tree languages.

The variety Idem is not closed under the commutative cascade product, but
it is closed under the idempotent cascade product defined as follows. Suppose
that A is a Σ-algebra and B is a ∆-algebra, and consider a family of functions
αn : An × Σn → ∆n, n ∈ R such that αn(a1, . . . , an, σ) only depends on σ and
the set {a1, . . . , an}. Then the cascade product A×αB determined by the family
α = (αn)n∈R is called an idempotent cascade product of A and B. When A and
B are tree automata, the idempotent ta-cascade product of A and B determined
by α is the least subalgebra of the above idempotent cascade product. It is easy
to see that Idem is closed under the ta-cascade product. Below, we will just
write idempotent cascade product for the idempotent ta-cascade product.

A version of Theorem 7.6 holds.
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Theorem 11.6 Suppose that K is a class of idempotent finite algebras. Then
the least variety containing K closed under the idempotent cascade product is
the class of all idempotent algebras in the least closed variety containing K.

The same fact holds for finite idempotent tree automata.

Suppose that K is a class of finite idempotent tree automata. Say that
the idempotent next modality is expressible in FTLu(K) if for each formula ϕ
in FTLu(K) over any ranked set Σ there exists a formula EXϕ in FTLu(K)
over Σ such that for any t ∈ UΣ, t |= EXϕ iff t has an immediate subtree
satisfying ϕ. It is not difficult to see that this condition holds iff FTLu(K)
contains all idempotent definite tree languages, i.e., those commutative definite
tree languages contained in Idem.

Using the methods of the previous sections, we can prove the following re-
sults.

Theorem 11.7 Suppose that K is a class of finite idempotent tree automata
such that the idempotent next modality is expressible in FTLu(K). Then an
idempotent tree language L ⊆ UΣ is in FTLu(K) iff its minimal tree automaton
belongs to the least variety of finite idempotent tree automata containing D0 and
K, which is closed under the idempotent cascade product.

Theorem 11.8 Let V be a variety of finite tree automata containing the fi-
nite idempotent definite tree automata and contained in Idem, which is closed
under the idempotent cascade product. Then FTLu(V) = Lu

V. Moreover, the
assignment V 7→ FTLu(V) defines an order isomorphism between varieties of
finite idempotent tree automata containing the finite idempotent definite tree
automata and closed under the idempotent cascade product, and closed classes
of unordered tree languages contained in Idem and containing the idempotent
definite tree languages.

Let CTLi denote the class of all idempotent tree languages definable by the
formulas of the logic FTLu({EU}). As an application, we have:

Theorem 11.9 An unordered tree language belongs to CTLi iff its minimal
tree automaton is in the least variety of finite (idempotent) tree automata con-
taining EU closed under the idempotent cascade product.
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