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Abstract

We give an effective characterization of the expressive power of a simple
temporal logic on finite trees related to a fragment of CTL.

1 Introduction

In [4], we associated a temporal logic with each class of regular tree languages
and gave an algebraic characterization of the expressive power of these logics un-
der certain natural assumptions. Our characterization was based on the notion
of the cascade product of finite algebras. In order to turn the obtained algebraic
characterization into decision procedures, one has to develop a structure theory
of finite algebras with respect to the cascade product. In this paper, we give
an effective characterization of the expressive power of a simple temporal logic
on finite trees involving only the next and eventually modalities. Our result is
based on the general results of [4] and on an analysis of the structure of finite
algebras in the variety generated by certain two-element algebras, closed under
the cascade product.

2 Preliminaries

Suppose that R denotes a rank type containing 0. We let R− stand for the
rank type R − {0}. Similarly, if Σ is a ranked alphabet of rank type R, then
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we let Σ− denote the ranked alphabet of rank type R− obtained from R by
removing all symbols of rank 0. When A is a finite Σ-algebra of rank type R,
then we let A− denote the Σ−-algebra obtained from A by forgetting about the
constants. By extension, if K is a class of finite algebras of rank type R, then
K− = {A− : A ∈ K} is a class of finite algebras of rank type R−.

Conversely, if K is a class of finite algebras of rank type R−, then K+ denotes
the class of all finite tree automata of rank type R whose reducts obtained by
forgetting about the constants belong to K. We call a class K of finite tree
automata of rank type R strictly closed if there is a closed variety K0 of finite
algebras of rank type R− such that K = K+

0 . Note that every strictly closed
class of finite tree automata is a closed variety of finite tree automata. Thus,
we will also call a strictly closed class of finite tree automata a strictly closed
variety.

Remark 2.1 When K is strictly closed, there is a unique closed variety K0 of
finite algebras of type R− with K = K+

0 . In fact, K0 = K−.

When Σ is a ranked alphabet of rank type R and a is a letter not in Σ, then
we let Σ(a) denote the ranked alphabet obtained from Σ by adding a to Σ0.

Proposition 2.2 The following conditions are equivalent for a class K of finite
tree automata of rank type R.

1. K is a strictly closed variety.

2. K is a closed variety of finite tree automata which is additionally closed
under adding constants.

3. There is a class K0 of finite tree automata such that for each Σ-tree au-
tomaton A in K and for any c ∈ A there is a letter c in Σ0 whose interpre-
tation is c, and such that K is the least closed variety of finite automata
containing K0.

Proof. The first two conditions are clearly equivalent. The fact that the second
condition implies the third follows by letting K0 consist of those tree automata
A in K such that each c ∈ A is the interpretation of at least one constant symbol.
Finally, to see that the third condition implies the first, one can show that if
K1 denotes the closed variety of finite algebras of rank type R− generated by
K−

0 , then K = K+
1 . 2

The results of the paper can be best presented with the help of partial
algebras. Suppose that Σ is a ranked alphabet of rank type R−. A partial Σ-
algebra A consists of a nonempty set A and a partial operation for each symbol
in Σ, i.e., a partial function σA : An → A for each σ ∈ Σn, n > 0. Note that
every Σ-algebra is a partial algebra. The notions of homomorphism, subalgebras
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etc. can be extended to partial algebras in several different ways, cf., e.g., [7].
Here we use these concepts as described below.

Suppose that A = (A, (σA)σ∈Σ) and B = (B, (σB)σ∈Σ) are partial Σ-algebras,
where Σ is of rank type R−. We say that A is a partial subalgebra of B if A ⊆ B
and for all σ ∈ Σn, n > 0, and a1, . . . , an ∈ A, if σA(a1, . . . , an) is defined
then so is σB(a1, . . . , an) and σA(a1, . . . , an) = σB(a1, . . . , an). When A is a
partial subalgebra of B and A = B, we also say that B is an extension of A.
Moreover, we say that A is an induced partial subalgebra of B if A is a partial
subalgebra of B and for each σ ∈ Σn, n > 0 and a1, . . . , an ∈ A, σA(a1, . . . , an)
is defined iff σB(a1, . . . , an) is defined and belongs to A. Thus, when X is a
nonempty subset of B, then X induces a partial subalgebra of B whose carrier
is X and whose operations are the restrictions of the operations of B onto X.
Note that an induced partial subalgebra of B is not necessarily closed under all
operations of B. A homomorphism A → B is a function h : A → B such that
for all σ ∈ Σn, n > 0 and for all a1, . . . , an ∈ A, if σ(a1, . . . , an) is defined then
σ(h(a1), . . . , h(an)) is defined, and h(σ(a1, . . . , an)) = σ(h(a1), . . . , h(an)). We
say that an equivalence relation ∼ on A is a congruence of A if for all σ ∈ Σn,
n > 0, a1, . . . , an, a′1, . . . , a

′
n ∈ A, if ai ∼ a′i, for all i ∈ [n], and σ(a1, . . . , an)

and σ(a′1, . . . .a
′
n) are both defined, then σ(a1, . . . , an) ∼ σ(a′1, . . . .a

′
n). If ∼

is a congruence of A, the factor algebra A/ ∼ is the partial algebra on the
quotient set A/∼ such that for all σ ∈ Σn, n > 0, and for all congruence classes
C1, . . . , Cn, C, it holds that σ(C1, . . . , Cn) = C iff σ(c1, . . . , cn) ∈ C holds in
A for some ci ∈ Ci, i ∈ [n]. Note that the quotient map A → A/ ∼ is a
homomorphism A→ A/ ∼.

Suppose that A is a partial Σ-algebra, where Σ is of rank type R−. Let
a, b ∈ A. We say that b is accessible from a if there is a tree t ∈ TΣ(Xn+1),
for some n ≥ 0, such that b = t(a, c1, . . . , cn) for some c1, . . . , cn ∈ A. A
transitivity class of A is any maximal subset X of A with the property that for
any a, b ∈ X, b is accessible from a. It is clear that each a ∈ A is contained
in a unique transitivity class. The transitivity classes are partially ordered as
follows. Suppose that X and Y are transitivity classes. Then X ≤ Y iff there
exist a ∈ X and b ∈ Y such that b is accessible from a iff for all a ∈ X and
b ∈ Y , b is accessible from a. Note that if X1, . . . , Xn, X are transitivity classes,
a1 ∈ X1, . . . , an ∈ Xn, and σ(a1, . . . , an) ∈ X, for some σ ∈ Σn, then Xi ≤ X
holds for all i ∈ [n]. In particular, any maximal transitivity class is closed with
respect to all operations. Moreover, for any transitivity class X, the union of
all transitivity classes ≥ X is closed with respect to all operations.

Lemma 2.3 Suppose that A is a partial algebra of rank type R− and ρ is a
congruence relation of A. Suppose that whenever aρb holds for some a, b ∈ A,
then a and b are in the same transitivity class. Then the transitivity classes of
A/ρ are the sets X/ρ, where X is a transitivity class of A.
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3 A Closed Variety of Finite Algebras

In [4], we defined the algebra (tree automaton) EF (R) for each rank type R
containing 0. By forgetting about the constants, we obtain the algebra EF (R−).
Below, when the context permits, we will just write EF for both EF (R) and
EF (R−).

Let Wp denote the class of finite partial Σ-algebras A, for all ranked al-
phabets Σ of rank type R−, with the following property: There exists an
integer k ≥ 0 such that for every t ∈ TΣ(Xm+n), m,n ≥ 0, such that the
depth of each vertex labeled xi with i ∈ [m] is at least k, and for all tran-
sitivity classes X and ai, bi ∈ X, i ∈ [m], and cj ∈ A, j ∈ [n], if both
t(a1, . . . , am, c1, . . . , cn) and t(b1, . . . , bm, c1, . . . , cn) exist and are in X, then
t(a1, . . . , am, c1, . . . , cn) = t(b1, . . . , bm, c1, . . . , cn). When A ∈ Wp, the least
such integer k will be called the index of A. We let W denote the subclass of
all (complete) algebras in Wp.

Proposition 3.1 W is a closed variety containing the finite definite algebras
of rank type R− and the algebra EF (R−).

Proof. It is clear that W contains EF and all finite definite algebras. Since W
contains all trivial algebras and is clearly closed under subalgebras, it suffices
to show that W is closed under the cascade product and homomorphic images.
So suppose that h : A → B is a surjective homomorphism, where A is in W.
Suppose that t ∈ TΣ(Xm+n), Y is a transitivity class of B and a′i, b

′
i ∈ Y , i ∈ [m],

c′j ∈ B, j ∈ [n], such that t(a′1, . . . , a
′
m, , c′1, . . . , c

′
n) and t(b′1, . . . , b

′
m, c′1, . . . , c

′
n)

are in Y and t(a′1, . . . , a
′
m, , c′1, . . . , c

′
n) 6= t(b′1, . . . , b

′
m, c′1, . . . , c

′
n). Then let X

denote a transitivity class of A such that h(X) intersects Y which is maximal
with this property with respect to the ordering of transitivity classes of A.
Then h(X) = Y . Let ai, bi ∈ X and cj ∈ A, i ∈ [m], j ∈ [n] with h(ai) = a′i,
h(bi) = b′i and h(cj) = c′j , for all i ∈ [m] and j ∈ [n]. Using the maximality of
X, we have that t(a1, . . . , am, c1, . . . , cn) and t(b1, . . . , bm, c1, . . . , cn) are in X,
moreover, since

h(t(a1, . . . , am, c1, . . . , cn)) = t(a′1, . . . , a
′
m, c′1, . . . , c

′
n)

6= t(b′1, . . . , b
′
m, , c′1, . . . , c

′
n)

= h(t(b1, . . . , bm, c1, . . . , cn)),

we have t(a1, . . . , am, c1, . . . , cn) 6= t(b1, . . . , bm, c1, . . . , cn). This shows that
if k denotes the index of A, then for every t ∈ TΣ(Xm+n) such that the
depth of each vertex labeled xi with i ∈ [m] is at least k, and for all tran-
sitivity classes Y of B and a′i, b

′
i ∈ Y , c′j ∈ B, i ∈ [m], j ∈ [n], either at

least one of t(a′1, . . . , a
′
m, c′1, . . . , c

′
n) and t(b′1, . . . , b

′
m, c′1, . . . , c

′
n) is not in Y or

t(a′1, . . . , a
′
m, c′1, . . . , c

′
n) = t(b′1, . . . , b

′
m, c′1, . . . , c

′
n). Thus, B ∈ W.

To show that W is closed under the cascade product, suppose that A is
a finite Σ-algebra in W, B is a finite ∆-algebra in W, and consider a cas-
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cade product C = A ×α B. Let k denote the sum of the indices of A and
B. Suppose that t ∈ TΣ(Xm+n) such that the depth of each vertex labeled
xi with i ∈ [m] is at least k and Z is a transitivity class of C. We can de-
compose t as r(s1, . . . , s`, xm+1, . . . , xm+n), for some trees r ∈ TΣ(X`+n) and
sj ∈ TΣ(Xm+n), j ∈ [`], such that whenever a vertex in some sj is labeled xi

with i ∈ [m] then the depth of that vertex in sj is greater than or equal to
the index of A, and the depth of each vertex of r labeled xj with j ∈ [`] is
greater than or equal to the index of B. It is easy to see using Proposition 7.1
in [4] that there exist a transitivity class X of A and a transitivity class Y of
B with Z ⊆ X × Y . Let (ai, a

′
i), (bi, b

′
i) ∈ Z and (cj , c

′
j) ∈ C, for all i ∈ [m]

and j ∈ [n]. Assume that tC((a1, a
′
1), . . . , (am, a′m), (c1, c

′
1), . . . , (cn, c′n)) and

tC((b1, b
′
1), . . . , (bm, b′m), (c1, c

′
1), . . . , (cn, c′n)) are in Z. We want to show that

these two elements are equal. Since for all j ∈ [`], (sj)A(a1, . . . , am, c1, . . . , cn)
and (sj)A(b1, . . . , bm, c1, . . . , cn) are in X, we have (sj)A(a1, . . . , am, , c1, . . . , cn) =
(sj)A(b1, . . . , bm, , c1, . . . , cn) = dj , j ∈ [`]. For each j ∈ [`], let us define
sa

j = α(a1,...,am,c1,...,cn)(sj) and sb
j = α(b1,...,bm,c1,...,cn)(sj). Moreover, define

ej = sa
j (a′1, . . . , a

′
m, c′1, . . . , c

′
n) and fj = sb

j(b
′
1, . . . , b

′
m, c′1, . . . , c

′
n), j ∈ [`], and

r̂ = α(d1,...,dm,c1,...,cn)(r). By Proposition 7.1 in [4],

tC((a1, a
′
1), . . . , (am, a′m), (c1, c

′
1), . . . , (cn, c′n)) =

= (rA(d1, . . . , d`, c1, . . . , cn), r̂B(e1, . . . , e`, c1, . . . , cn))
tC((b1, b

′
1), . . . , (bm, b′m)(c1, c

′
1), . . . , (cn, c′n)) =

= (rA(d1, . . . , d`, c1, . . . , cn), r̂B(f1, . . . , f`, c1, . . . , cn)).

However, ej , fj ∈ Y , for all j ∈ [`], and both r̂B(e1, . . . , e`, c1, . . . , cn) and
r̂B(f1, . . . , f`, c1, . . . , cn) are in Y . But since B is in W and the index of B
is less than or equal to the depth of any vertex of r̂ labeled xj , for all j ∈ [`],
we have that

r̂B(e1, . . . , e`, c1, . . . , cn) = r̂B(f1, . . . , f`, c1, . . . , cn).

This proves that the elements tC((a1, a
′
1), . . . , (am, a′m), (c1, c

′
1), . . . , (cn, c′n)) and

tC((b1, b
′
1), . . . , (bm, b′m), (c1, c

′
1), . . . , (cn, c′n)) are equal. We have thus proved

that C is in W with index less than or equal to k. 2

Let Mon (resp. Monp) denote the class of all algebras in W (resp. Wp)
of index 0. By considering the tree t = x1 of depth 0, we have that for any
transitivity class X of a partial algebra A in Monp, and for any a, b ∈ X, since
the index of A is 0, a = t(a) = t(b) = b. It follows that Mon (resp. Monp)
consists of all finite algebras (resp. partial algebras) all of whose transitivity
classes are singletons. By the above proof, we have:

Corollary 3.2 Mon is a closed variety.

Proposition 3.3 Suppose that A is in Wp. Then each nontrivial transitivity
class X of A contains two different elements a, b such that for any σ ∈ Σn and
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ci, c
′
i ∈ A such that ci = c′i or {ci, c

′
i} = {a, b}, for all i ∈ [n], if c = σ(c1, . . . , cn)

and c′ = σ(c′1, . . . , c
′
n) are defined and belong to X, then c = c′.

Proof. Suppose that X is a nontrivial transitivity class. There exists an integer
k with the property that for all t ∈ TΣ(Xm+n) with m, n ≥ 0 such that each leaf
of t labeled xi with i ∈ [m] is of depth ≥ k and for any a′1, . . . , a

′
m, b′1, . . . , b

′
m ∈ X

and d1, . . . , dn ∈ A, if t(a′1, . . . , a
′
m, , c1, . . . , cn) and t(b′1, . . . , b

′
m, , c1, . . . , cn)

are both defined and belong to X, then the elements t(a′1, . . . , a
′
m, c1, . . . , cn)

and t(b′1, . . . , b
′
m, c1, . . . , cn) are equal. Now let k0 denote the least such in-

teger. Since X has at least two elements, k0 > 0. Moreover, there exists
some t0 ∈ TΣ(Xm0+n0), a′1, . . . , a

′
m0

, b′1, . . . , b
′
m0

∈ X and d1, . . . , dn0 ∈ A
such that every leaf of t0 labeled in {x1, . . . , xm0} is of depth ≥ k0 − 1 and
a = t0(a′1, . . . , a

′
m0

, c1, . . . , cn0) and b = t0(b′1, . . . , b
′
m0

, c1, . . . , cn0) are different
elements of X. It is now clear that a and b satisfy the condition in the statement
of the Proposition. 2

Proposition 3.4 A finite partial algebra of rank type R− belongs to Wp iff it
has an extension to an algebra in W. Moreover, any partial algebra A in Wp

has an extension A′ in W such that the transitivity classes of A are the same
as those of A′.

Proof. The sufficiency part is obvious. Suppose that A is in Wp. We prove
that A has an extension to an algebra A′ in W having the same transitivity
classes. Let #(A) denote the number of tuples (σ, a1, . . . , am) with σ ∈ Σm,
m > 0, a1, . . . , am ∈ A such that σ(a1, . . . , am) is undefined. We argue by
induction on #(A). When this number is 0, our claim is trivial. Suppose that
#(A) > 0. Let us extend the partial order on the transitivity classes to a
linear order, and let Xmax denote the greatest transitivity class with respect
to this linear order. If there exist some σ ∈ Σm, m > 0 and a1, . . . , am ∈
A − Xmax such that σ(a1, . . . , am) is not defined in A, then make it defined
by any element of Xmax. The resulting partial algebra is also in Wp, which
by induction has an extension to an algebra in W with the same transitivity
classes, and thus by the same transitivity classes that A has. Thus, we may
suppose that whenever σ(a1, . . . , am) is undefined in A, then at least one of the
ai is in Xmax. Now if Xmax is a singleton, it is clear how to extend A to an
algebra in W: Whenever σ(a1, . . . , am) is undefined, make it defined by the
unique element of Xmax. So in the rest of the proof we assume that Xmax has at
least 2 elements. By Proposition 3.3, there exist different elements c, c′ ∈ Xmax

such that the equivalence relation ρ that collapses c and c′ and keeps all other
elements intact is a congruence relation of A. Moreover, for all σ ∈ Σm, m > 0
and congruence classes C1, . . . , Cm, if σ(C1, . . . , Cm) = {c, c′} in the quotient
partial algebra A/ρ, then either σ(C1, . . . , Cm) = {c} or σ(C1, . . . , Cm) = {c′}
holds in A. Now A/ρ is also in Wp and, by the induction hypothesis, has an
extension to an algebra B in W with the same transitivity classes. We use B to
construct a suitable extension A′ of A. Let σ ∈ Σm, m > 0, a1, . . . , am ∈ A. If
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in B, C = σ(ρ(a1), . . . , ρ(am)) is not the congruence class {c, c′}, then in A′ we
define σ(a1, . . . , am) as the unique element of C. If C = {c, c′}, then we know
that in A, either σ(ρ(a1), . . . , ρ(am)) ⊆ {c} or σ(ρ(a1), . . . , ρ(am)) = {c′}. In the
first case, define σ(a1, . . . , am) = c, and in the second, define σ(a1, . . . , am) = c′.
Note that ρ is also a congruence relation of A′.

It is clear that A′ is an extension of A. Moreover, it is easy to see using
Lemma 2.3 that the transitivity classes of A′ are those of A. We know that B is
in W. Let k denote the index of B. We show that A′ has index ≤ k+1. To prove
this, suppose that t ∈ TΣ(Xm+n) is such that the depth of each vertex labeled in
the set {x1, . . . , xm} is at least k+1. Write t = σ(t1, . . . , t`), where σ ∈ Σ`, ` > 0.
Let a1, a

′
1, . . . , am, a′m be in the same transitivity class Y , and let b1, . . . , bn ∈ A.

Assume that in A′, both t(a1, . . . , am, b1, . . . , bn) and t(a′1, . . . , a
′
m, b1, . . . , bn) are

in Y . Define di = ti(a1, . . . , am, b1, . . . , bn) and d′i = ti(a′1, . . . , a
′
m, b1, . . . , bn),

for all i ∈ [`]. If for some i, none of the variables in {x1, . . . , xm} occurs in
ti, then clearly di = d′i. If some of these variables do occur, then the tran-
sitivity class of di and of d′i is Y , since it must be both below and above Y
in the partial order of the transitivity classes. Since B is in W and has index
k, it follows now that ρ(di) = ρ(d′i), for all i ∈ [`]. Now by construction,
ρ(tA′(a1, . . . , am, b1, . . . , bn)) = σB(ρ(d1), . . . , ρ(d`)) = σB(ρ(d′1), . . . , ρ(d′`)) =
ρ(tA′(a′1, . . . , a

′
m, b1, . . . , bn)). Let C denote this equivalence class. If C 6= {c, c′},

then both tA′(a1, . . . , am, b1, . . . , bn) and tA′(a′1, . . . , a
′
m, b1, . . . , bn) are equal to

the unique element of C. If C = {c, c′}, so that Y = Xmax, then, by con-
struction, either tA′(a1, . . . , am, b1, . . . , bn) = c = tA′(a′1, . . . , a

′
m, b1, . . . , bn) or

tA′(a1, . . . , am, b1, . . . , bn) = c′ = tA′(a′1, . . . , a
′
m, b1, . . . , bn) holds in A′. 2

Corollary 3.5 A finite partial algebra belongs to Monp iff it has an extension
to an algebra in Mon.

We are now ready to prove the main result of this section.

Theorem 3.6 W is the least closed variety of finite algebras of rank type R−

containing the definite algebras and the algebra EF (R−).

Proof. Let W′ denote the least closed variety of finite algebras of rank type R−

containing the definite algebras and the algebra EF (R−). By Proposition 3.1,
we have that W′ ⊆ W. Suppose now that A is in W. We use induction on the
number of elements of A to show that A belongs to W′. The induction base is
obvious. So suppose that A has at least two elements.

We know that the transitivity classes of A are partially ordered. Let us
extend this partial order arbitrarily to a linear order and let Xmax denote the
greatest transitivity class of A with respect to this linear order.

Assume first that Xmax has a single element, denoted amax. Then let B
denote the induced partial subalgebra of A determined by the set B = A −
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{amax}. Clearly, B ∈ Wp. We know that B has an extension to an algebra B′ in
W. Moreover, by the induction hypothesis, B′ is in W′. To prove that A ∈ W′,
we show that A is a homomorphic image of a cascade product C = B′ ×α EF .
To this end, for each n ∈ R− define αn : Bn × Σn → {↑n, ↓n} as follows:

αn(a1, . . . , an, σ) =
{ ↑n if σA(a1, . . . , an) = amax

↓n otherwise.

It is clear that the function (a, 0) 7→ a, (a, 1) 7→ amax, a ∈ B, is a surjective
homomorphism C→ A.

The second case is that Amax has two ore more elements. Then there exist
different elements a, b ∈ Xmax such that all conditions of Proposition 3.3 hold.
In particular, the equivalence relation ρ that collapses a, b and keeps the other
elements separated is a congruence relation. Moreover, for all σ ∈ Σn and
elements ai, bi ∈ A with aiρbi, i ∈ [n], σ(a1, . . . , an) = σ(b1, . . . , bn). The
quotient A/ρ is in W. Thus, by the induction hypothesis, it is in W′. Let D0

denote the 1-definite algebra on the set {0, 1} with operations ↑n (d1, . . . , dn) =
1 and ↓n (d1, . . . , dn) = 0, for all n ∈ R− and d1, . . . , dn ∈ {0, 1}. Then define
the cascade product A/ρ×α D0 by

αn(ρ(a1), . . . , ρ(an), σ) =
{ ↑n if σA(a1, . . . , an) = a
↓n otherwise, n ∈ R.

Then the set {({c}, 0) : c 6∈ {a, b}} ∪ {({a, b}, 0), ({a, b}, 1)} determines a subal-
gebra isomorphic to A. Thus, A ∈ W′. 2

The same argument using Corollaries 3.2 and 3.5 proves:

Corollary 3.7 Mon is the least closed variety containing EEF.

4 An Effective Characterization of CTL(X, EF)

The language class CTL(X, EF) was defined in [4]. In this section, we combine
results from [4] and the previous sections to derive an effective characterization
of CTL(X,EF).

Theorem 4.1 Suppose that Σ is a ranked alphabet of rank type R. A language
L ⊆ TΣ is in CTL(X, EF) iff the minimal automaton of L is in W+ iff L can
be accepted by a tree automaton in W+.

Proof. From Theorem 10.1 in [4] and Theorem 3.6. 2

Theorem 4.2 There exists an algorithm to decide whether or not a regular
tree language (given by a tree automaton with a specified set of final states) is
in CTL(X, EF).
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Proof. By Theorem 4.1, all we have to show is that if A is in W and has index
k, then k is less than |A|2, But this follows by noting that given any tree t ∈
TΣ(Xm+n), transitivity class C, a1, . . . , am, b1, . . . , bm ∈ C and c1, . . . , cn ∈ A,
if the depth of a leaf labeled xi is greater than or equal to |A|2, then there exist
different vertices v1 and v2 along this path such that the subtrees rooted at these
vertices evaluate to the same element a on the tuple (a1, . . . , am, c1, . . . , cn),
and to the same element b on (b1, . . . , bm, c1, . . . , cn). Assume that v1 is closer
to the root. Then we may replace the subtree rooted at v1 with the subtree
rooted in v2 to obtain a tree t′ ∈ TΣ(Xm+m) with t′(a1, . . . , am, c1, . . . , cn) =
t(a1, . . . , am, c1, . . . , cn) and t′(b1, . . . , bm, c1, . . . , cn) = t(b1, . . . , bm, c1, . . . , cn).
By repeating this procedure, in the end we obtain a tree t′ such that the above
equalities hold and the depth of t′ is less than |A|2. Thus, if

t(a1, . . . , am, c1, . . . , cn) 6= t(b1, . . . , bm, c1, . . . , cn),

then also

t′(a1, . . . , am, c1, . . . , cn) 6= t′(b1, . . . , bm, c1, . . . , cn). 2

Remark 4.3 When R = {0, 1}, our characterization of the expressive power
of CTL(X,EF) agrees with that obtained in [2]. Moreover, in this case tree
language L is in CTL(X, EF) iff its minimal automaton A satisfies the following
condition: Whenever a, b ∈ A, a 6= b are in the same transitivity class of A−
and p(a) = a, p(b) = b for some term p ∈ TΣ−(X1), then p = x1. However,
when R contains an integer > 1, this condition is not equivalent to the one in
Theorem 4.1.

Corollary 4.4 A tree language L ⊆ UΣ of rank type R is in CTLu(X, EF) iff
its minimal automaton belongs to W+. It is decidable for a regular unordered
tree language whether it belongs to CTLu(X,EF).

Remark 4.5 Essentially the same decidability result was independently ob-
tained by different methods in [1].
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[4] Z. Ésik, Cascade products of tree automata and temporal logics on trees,
Part 1, to appear.
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