
An Approach to the Embedding Problem
for Codes Defined by Binary Relations

Do Long Van1 and Kieu Van Hung2

1 Institute of Mathematics
18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

dlvan@math.ac.vn
2 Hanoi Pedagogical University No.2

Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam
hungkv@hn.vnn.vn

Abstract. We consider the possibility to embed a finite (regular) code
of a given class C of codes in a code maximal in C (not necessarily
maximal as a code) which remains finite (regular, resp.). A general em-
bedding schema is proposed for the classes of codes, which can be defined
by length-increasing transitive binary relations. As applications, positive
solutions for the embedding problem are obtained in a unified way for
many classes of codes, well-known as well as new.

Key words: Code, embedding problem, independent set, tree representation

1 Introduction

Throughout the paper about codes we mean length-variable codes. A simple
application of Zorn’s Lemma showed that every code is included in a maximal
code. For thin codes, regular codes in particular, the maximality is equivalent
to the completeness, which concerns with optimal use of transmission alphabet.
Thus maximal codes are important in both theoretical and practical points of
view. For background of the theory of codes we refer to [1, 8, 14].

Every regular code is included in a maximal code, which is still regular [4].
There exist however finite codes, which cannot be included in any finite maximal
code [10, 12]. These facts suggested the question: Is it true, for a given class C of
codes, that every finite (regular) code in C can be included in a maximal code
in C (not necessarily maximal as a code) which is still finite (regular, resp.)? We
call this the embedding problem for the class C of codes.

Until now the answer for the embedding problem is only known for several
cases. For prefix codes the answer is positive for the finite case (folklore, see [1]).
The embedding procedure is simple: given a finite prefix code X, it suffices to
add the lacking leaves to the tree associated with X [1]. The regular case can
be solved similarly by using the deterministic finite automaton associated with
X [2, 13]. From a well-known result of M. P. Schützenberger (see [1]) it follows
that it is impossible to embed a finite code with deciphering delay d 6= 0 into

111

a maximal finite code with deciphering delay d′ 6= 0. For the regular case, the
embedding problem for these codes has been solved positively in [3]. There is
finite bifix code, which cannot be included in any finite maximal bifix code [1]
whereas every regular bifix code is included in a regular maximal bifix code [18].
This generalizes the construction in [11]. The finite case for infix codes is solved
positively in [7] and later by another way in [9] together with the regular case,
etc.

In this paper, we propose a general embedding schema for the classes of codes
defined by length-increasing transitive binary relations (Theorem 1). Using this,
positive solutions are obtained in a unified way for some well-known classes of
codes, namely those of prefix codes, suffix codes, p-infix codes, s-infix codes,
infix codes, hypercodes, and also for some new classes of codes introduced here,
namely those of subinfix codes, p-subinfix codes, s-subinfix codes, sucyperinfix
codes, p-sucyperinfix codes, s-sucyperinfix codes, superinfix codes, p-superinfix
codes, s-superinfix codes, p-hypercodes, s-hypercodes, sucypercodes and super-
codes. This work is motivated by the idea to define codes as independent sets
with respect to a binary relation [6, 14], the way to embed an infix code in a
maximal one in [9], and the literal representation for prefix codes [1]. Several
among the new kinds of codes introduced here are research subject of another
paper [17].

2 Defining Codes by Binary Relations

As has been observed by several authors, many codes can be defined as inde-
pendent sets with respect to a binary relation (see [6, 14–16]). In this section, we
recall some well-known classes of codes, which can be defined in such a way.

Let A throughout be a non-empty finite alphabet. Let A∗ be the free monoid
generated by A, that is the set of words over A. The empty word is denoted by 1
and A+ = A∗− 1. The number of occurrences of letters in a word u is the length
of u, denoted by |u|. Any set of words is a language. A language X is a code over
A if for any n, m ≥ 1 and any x1, . . . , xn, y1, . . . , ym ∈ X, the condition

x1x2 . . . xn = y1y2 . . . ym

implies n = m and xi = yi for i = 1, . . . , n. A code X is maximal over A if X
is not properly contained in another code over A. Let C be a class of codes over
A. A code X ∈ C is maximal in C (not necessarily maximal as a code) if it is
not properly contained in another code in C. For further details of the theory of
codes we refer to [1, 8, 14].

Given a binary relation ≺ on A∗. A subset X in A∗ is an independent set
with respect to the relation ≺ if any two elements of X are not in this relation.
A class C of codes is defined by ≺ if these codes are exactly the independent sets
w.r.t. ≺. The class C is then denoted by C≺. When the relation ≺ characterizes
some property α of words, instead of ≺ we write ≺α, and also Cα stands for C≺α .
The relation ≺ is said to be length-increasing if for any u, v ∈ A∗ : u ≺ v implies

112

|u| < |v|. We denote by ¹ the reflexive closure of ≺, i.e. for any u, v ∈ A∗, u ¹ v
iff u = v or u ≺ v.

A word u is called an infix (a prefix, a suffix) of a word v if there exist words
x, y such that v = xuy (v = uy, v = xu, resp.). The infix (prefix, suffix) is proper
if xy 6= 1 (y 6= 1, x 6= 1, resp.). A word u is a subword of a word v if, for some
n ≥ 1, u = u1 . . . un, v = x0u1x1 . . . unxn with u1, . . . , un, x0, . . . , xn ∈ A∗. If
x0 . . . xn 6= 1 then u is called a proper subword of v.

Definition 1. Let A be an alphabet and X ⊆ A+.

(i) X is a prefix code (suffix code) if no word in X is a proper prefix (proper
suffix, resp.) of another word in X;

(ii) X is a bifix code if it is both a prefix code and a suffix code;
(iii) X is an infix code (a p-infix code, a s-infix code) if no word in X is an infix

of a proper infix (a proper prefix, a proper suffix, resp.) of another word in
X;

(iv) X is a hypercode if no word in X is a proper subword of another word in it.

The classes of prefix codes, suffix codes, bifix codes, infix codes, p-infix codes,
s-infix codes and hypercodes are denoted respectively by Cp, Cs, Cb, Ci, Cp.i,
Cs.i and Ch. It is easy to see that these classes of codes are defined respectively
by the relations which satisfy, for any u, v ∈ A∗, the following corresponding
conditions:

u ≺p v ⇔ v = ux, with x 6= 1;
u ≺s v ⇔ v = xu, with x 6= 1;
u ≺b v ⇔ (u ≺p v) ∨ (u ≺s v);
u ≺i v ⇔ v = xuy, with xy 6= 1;
u ≺p.i v ⇔ v = xuy, with y 6= 1;
u ≺s.i v ⇔ v = xuy, with x 6= 1;
u ≺h v ⇔ ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1x1 . . . unxn, with x0 . . . xn 6= 1.

Prefix codes, suffix codes and bifix codes play a fundamental role in the
theory of codes (see [1, 14]). Details about infix codes, p-infix codes and s-infix
codes we refer to [6, 14]. Hypercodes, a special kind of infix codes, have some
interesting properties, especially, all hypercodes are finite (see [14]). Relationship
between these classes of codes can be resumed in the following proposition.

Proposition 1. Over any alphabet consisting of at least two letters, the follow-
ings hold true.

(i) Cb ⊂ Cp, Cb ⊂ Cs, Cb = Cp ∩ Cs, Ch ⊂ Ci;
(ii) Ci ⊂ Cp.i, Ci ⊂ Cs.i, Ci = Cp.i ∩ Cs.i, Ci ⊂ Cb, Cp.i ⊂ Cp, Cs.i ⊂ Cs.

3 A General Embedding Schema

In this section we propose a general embedding schema for the classes of codes
defined by length-increasing transitive binary relations which will be used in the
sequel.

113

Let ≺ be a binary relation on A∗ and u, v ∈ A∗. We say that u depends on v
if u ≺ v or v ≺ u holds. Otherwise, u is independent of v. These notions can be
extended to subsets of words in a standard way. Namely, a word u is dependent
on a subset X if it depends on some word in X. Otherwise, u is independent of
X. For brevity, we shall adopt the following notations

u ≺ X ⇀↽ ∃v ∈ X : u ≺ v; X ≺ u ⇀↽ ∃v ∈ X : v ≺ u.

An element u in X is minimal in X if there is no word v in X such that v ≺ u.
When X is finite, by maxX we denote the maximal wordlength of X.

Now, for every subset X in A∗ we denote by DX , IX , LX and RX the sets of
words dependent on X, independent of X, non-minimal in IX and minimal in
IX , respectively. In notations

DX = {u ∈ A∗ | u ≺ X ∨X ≺ u};
IX = A∗ −DX ;

LX = {u ∈ IX | IX ≺ u};
RX = IX − LX

When there is no risque of confusion, for brevity we write simply D, I, L, R
instead.

We can now formulate a fundamental result by means of which one obtains
solutions of the embedding problem for many classes of codes in a unified way.

Theorem 1. Let ≺ be a length-increasing transitive binary relation on A∗ which
defines the class C≺ of codes. Then, for any code X in C≺, we have

(i) RX is a maximal code in C≺ which contains X;
(ii) If moreover the relation ≺ satisfies the condition

∃k ≥ 1∀u, v ∈ A+:(|v| ≥ |u|+ k) ∧ (u 6≺ v) ⇒ ∃w:(|w| ≥ |u|) ∧ (w ≺ v) (∗)

then the finiteness of X implies the finiteness of RX , and maxRX ≤ maxX+
k − 1.

Proof. (i) First, we prove that X ⊆ RX . There must be X ∩DX = ∅, otherwise
there would exist u in X ∩ DX and therefore, by the definition of DX , there
exists v ∈ X such that either u ≺ v or v ≺ u. This is impossible because X is an
independent set w.r.t. ≺. So X ⊆ A∗ −DX = IX . Next, we have X ∩ LX = ∅,
otherwise there would exist u ∈ X ∩ LX and therefore, by the definition of LX ,
there is v ∈ IX such that v ≺ u, which contradicts the definition of IX . Thus
X ⊆ IX − LX = RX .

Now, we show that RX ∈ C≺, or equivalently, RX is an independent set
w.r.t. ≺. Suppose the contrary that there exist u, v ∈ RX such that u ≺ v. Since
RX ⊆ IX , it follows u, v ∈ IX . This implies, by the definition of LX , v ∈ LX .
Thus v ∈ RX ∩ LX , a contradiction.

Finally, we prove that RX is maximal in C≺. Instead we will show that RX is
a maximal independent set w.r.t. ≺. Indeed, suppose this is not the case, there

114

would exist v0 6∈ RX such that RX∪{v0} is still an independent set w.r.t ≺. This
implies evidently v0 6∈ DX . So we have v0 ∈ IX −RX = LX . By the definition of
LX , there exists v1 ∈ IX such that v1 ≺ v0. If v1 ∈ RX then RX∪{v0} is no more
an independent set w.r.t. ≺, a contradiction. Therefore v1 ∈ LX . Then, again by
the definition of LX , there exists v2 ∈ IX such that v2 ≺ v1. The transitivity of ≺
implies v2 ≺ v0. Again it is impossible that v2 ∈ RX , hence v2 ∈ LX . Repeating
this argument we obtain finally an infinite sequence of elements vi ∈ LX , i ≥ 0,
such that

· · · ≺ vi+1 ≺ vi ≺ · · · ≺ v1 ≺ v0.

Since ≺ is length-increasing, we have |vi+1| < |vi| for all i ≥ 0. But this is
impossible because |v0| is finite. Thus, RX must be a maximal independent set
w.r.t. ≺ and hence a maximal code in C≺ which contains X.

(ii) Suppose X is a finite code in C≺ and n = max X. We will prove that for
any v ∈ IX with |v| ≥ n + k there exists w ∈ IX such that w ≺ v. Indeed, let
u be a word of maximal length in X. Then |v| ≥ |u| + k. Since every element
of IX is independent of X, it follows that u 6≺ v. By the condition (∗), there
exists w such that |w| ≥ |u| and w ≺ v. The word w must be in IX , otherwise,
the transitivity of ≺ implies the existence of some x ∈ X such that x ≺ v, a
contradiction. Thus the maximal wordlength of RX cannot exceed n+k−1 that
required to prove.

4 New Classes of Codes

We introduce in this section some new classes of codes whose the embedding
problem will be considered in the sequel. All such classes, as we shall see later
(Proposition 3), are subclasses of prefix codes or suffix codes.

Given u, v ∈ A+. Let u be a subword of v, u = u1 . . . un, v = x0u1x1 . . . unxn.
As u 6= 1, we may assume ui 6= 1 for all i. Then, we call u a right-proper subword
of v if x1 . . . xn 6= 1. Dually, if x0 . . . xn−1 6= 1 then u is a left-proper subword of
v. A word u is called a permutation of a word v if |u|a = |v|a for all a ∈ A, where
|u|a denotes the number of occurrences of the letter a in u. And u is a cyclic
permutation of v if there exist two words x, y such that u = xy and v = yx.

Definition 2. Let A be an alphabet and X ⊆ A+.

(i) X is a subinfix (p-subinfix, s-subinfix) code if no word in X is a subword of
a proper infix (prefix, suffix, resp.) of another word in X;

(ii) X is a p-hypercode (s-hypercode) if no word in X is a right-proper (left-
proper) subword of another word in X;

(iii) X is a superinfix (p-superinfix, s-superinfix) code if no word in X is a
subword of a permutation of a proper infix (prefix, suffix, resp.) of an-
other word in X;

(iv) X is a sucyperinfix (p-sucyperinfix, s-sucyperinfix) code if no word in X is
a subword of a cyclic permutation of a proper infix (prefix, suffix, resp.)
of another word in X;

115

(v) X is a supercode (sucypercode) if no word in X is a proper subword of a
permutation (cyclic permutation, resp.) of another word in it.

This definition itself explains the way we named the new kinds of codes. It
is easy to see that these classes of codes have as defining relations the following,
respectively.

u ≺si v ⇔ ∃w ∈ A∗ : w ≺i v ∧ u ¹h w;
u ≺p.si v ⇔ ∃w ∈ A∗ : w ≺p v ∧ u ¹h w;
u ≺s.si v ⇔ ∃w ∈ A∗ : w ≺s v ∧ u ¹h w;
u ≺p.h v ⇔ ∃n ≥ 1 : u = u1...un ∧ v = x0u1x1...unxn, with x1...xn 6= 1;
u ≺s.h v ⇔ ∃n ≥ 1 : u = u1...un ∧ v = x0u1x1...unxn, with x0...xn−1 6= 1;
u ≺spi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ π(v′)) : u ¹h v′′;
u ≺p.spi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ π(v′)) : u ¹h v′′;
u ≺s.spi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ π(v′)) : u ¹h v′′;
u ≺scpi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ σ(v′)) : u ¹h v′′;
u ≺p.scpi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ σ(v′)) : u ¹h v′′;
u ≺s.scpi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ σ(v′)) : u ¹h v′′;
u ≺sp v ⇔ ∃v′ ∈ π(v) : u ≺h v′;
u ≺scp v ⇔ ∃v′ ∈ σ(v) : u ≺h v′;

where π(v) and σ(v) are the sets of all permutations and cyclic permutations of
v respectively.

Example 1. Consider the subsets X1 = {aba, bab2a}, XR
1 = {aba, ab2ab}, X2 =

ab∗a, X3 = {a, ba}, XR
3 = {a, ab}, X4 = {ab, b3a}, XR

4 = {ba, ab3}, X5 =
{abab, a2b3} and X6 = {ab, b2a} over the alphabet A = {a, b}. It is easy to check
that the followings hold true

X1 ∈ Cp.si − Csi, X
R
1 ∈ Cs.si − Csi, X2 ∈ Csi ∩ Cspi ∩ Cscpi;

X3 ∈ Cp.h − Ch, XR
3 ∈ Cs.h − Ch, X6 ∈ Ch − Cscp;

X4 ∈ Cp.spi − Cscpi, X
R
4 ∈ Cs.spi − Cscpi, X5 ∈ Cscpi ∩ Cscp − Cspi.

Although, as we shall see below (Proposition 3), the class of p-hypercodes (s-
hypercodes) strictly contains the class of hypercodes, the former codes however
are still finite.

Proposition 2. All the p-hypercodes and s-hypercodes over a finite alphabet are
finite.

Proof. Let X be a p-hypercode over A, |A| = n. First we show that every chain
u1 ≺h u2 ≺h . . . of elements in X w.r.t. ≺h has the length no more than n.
Indeed, if it is not the case then there exist i, j with 1 ≤ i < j such that ui and
uj commence with a same letter a ∈ A. We must have ui = au′i, uj = au′j . On
the other hand, because ui and uj are not in the relation ≺p.h, we have uj = xui

with x 6= 1. Thus uj = au′j = xui = ax′au′i with x′a 6= 1, i. e. ui ≺p.h uj , a
contradiction. Next, we denote by X ′ the set of all the elements of X which are
maximal w.r.t. ≺h. Clearly, X ′ is an independent set w.r.t. ≺h, i. e. a hypercode

116

and therefore finite. For every x ∈ A∗ we put Sub(x) = {y ∈ X | y ¹h x}.
Obviously, Sub(x) is finite. By the above, ∀y ∈ X ∃x ∈ X ′ such that y ¹h x.
All these together imply X =

⋃
x∈X′ Sub(x) which means that X is finite. For

s-hypercodes, the proof is similar.

The following fact will be useful in the sequel.

Lemma 1. Let ≺1 and ≺2 be binary relations on A∗. Then C≺1∪≺2 = C≺1 ∩
C≺2 .

Proof. For any X ⊂ A∗, X ∈ C≺1 ∩C≺2 ⇔ (∀u, v ∈ X : (u, v) 6∈≺1 ∧(u, v) 6∈≺2)
⇔ (∀u, v ∈ X : (u, v) 6∈≺1 ∪ ≺2) ⇔ X ∈ C≺1∪≺2 .

Relationship between the classes of codes under consideration can be resumed
below.

Proposition 3. Over any alphabet consisting of at least two letters, the follow-
ings hold true

(i) Csi ⊂ Cp.si, Csi ⊂ Cs.si, Csi = Cp.si ∩ Cs.si, Csi ⊂ Ci,
Cp.si ⊂ Cp.i, Cs.si ⊂ Cs.i;

(ii) Cscpi ⊂ Cp.scpi, Cscpi ⊂ Cs.scpi, Cscpi = Cp.scpi ∩ Cs.scpi,
Cscpi ⊂ Csi, Cp.scpi ⊂ Cp.si, Cs.scpi ⊂ Cs.si;

(iii) Cspi ⊂ Cp.spi, Cspi ⊂ Cs.spi, Cspi = Cp.spi ∩ Cs.spi, Cspi ⊂ Cscpi,
Cp.spi ⊂ Cp.scpi, Cs.spi ⊂ Cs.scpi;

(iv) Ch ⊂ Cp.h, Ch ⊂ Cs.h, Ch ⊂ Csi, Cp.h ⊂ Cp.si, Cs.h ⊂ Cs.si,
Ch = Cp.h ∩ Cs.h = Cp.h ∩ Cs.si = Cp.si ∩ Cs.h;

(v) Csp ⊂ Cscp ⊂ Ch, Cscp ⊂ Cscpi, Csp ⊂ Cspi.

Proof. We prove only the item (i). For the remaining items the argument is sim-
ilar. The inclusions Csi ⊆ Cp.si and Csi ⊆ Cs.si hold because proper prefixes
and proper suffixes of a word are particular cases of proper infixes of the word.
The sets X1 and XR

1 in Example 1 show that the inclusions are strict. By def-
inition of the relations ≺p.si,≺s.si and ≺si we have ≺si=≺p.si ∪ ≺s.si. Hence,
by Lemma 1, Csi = Cp.si ∩ Cs.si. Next, since infixes of a word are particular
cases of subwords of it, the inclusions Csi ⊆ Ci, Cp.si ⊆ Cp.i and Cs.si ⊆ Cs.i

are true. The following example proves the strictness of the inclusions. Consider
X = {aba, bab2ab} over A = {a, b}. The word u = aba is not a proper infix
of v = bab2ab. But u is a subword of bab2a, a proper prefix of v, and also a
subword of ab2ab, a proper suffix of v. Thus X is an infix code not being neither
a p-subinfix code nor a s-subinfix code.

Remark 1. It is easy to check that the set X = {ab2, ba3b} is both a hypercode
and a superinfix code, i.e. Ch ∩ Cspi 6= ∅. However, Ch and Cspi are not com-
parable by inclusion. Indeed, evidently the infinite superinfix code ab∗a cannot
be a hypercode. On the other hand, the set Y = {bab, ab3a}, which is easily
verified to be a hypercode, is not a superinfix code because bab is a subword of
a permutation of the proper infix ab3 of ab3a.

117

By virtue of Propositions 1, 3 and Remark 1, the relative positions of the
classes of codes under consideration can be illustrated in the Figure 1, where
the arrow → stands for a strict inclusion. It is worthy to note that if we restrict
ourselves to considering only one-letter alphabets then all the classes of codes
represented in the Figure 1 coincide.

Csp

Cscp

Ch

Cp.h

Cp.si

Cp.i

Cp

Cs.h

Csi

Ci

Cb

Cscpi

Cp.scpi Cs.scpi

Cspi

Cp.spi Cs.spi

Cs.si

Cs.i

Cs

©©©*
HHHY

@
@

@
@@I

´
´

´
´

´
´

´
´

´
´

´
´́3

Á

½
½

½
½

½½>

J
J

J
JJ]

¤
¤
¤
¤
¤
¤
¤
¤¤º

@
@

@
@

@@I

¡
¡

¡
¡

¡¡µ

£
£
£
££±

¤
¤
¤
¤¤º

¤
¤
¤
¤
¤
¤
¤
¤
¤¤º

´
´

´
´

´
´

´
´

´
´

´
´

´́3

S
S

S
S

S
S

SSo

©©©©*
HHHHY

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQk

B
B

B
B

B
B

BBMXXXXXXXXXXy

6

»»»»»»»»»»:

XXXXXXXXXXy

6

»»»»»»»»»»:

XXXXXXXXXXy

»»»»»»»»»»:

6 6

6 6

Fig. 1. Relative positions of the classes of codes

118

5 Embedding Problem for Regular Case

In this section we apply Theorem 1 to show that the embedding problem for the
classes of codes introduced above has a positive solution in the regular case. For
proving this we need some lemmas.

Lemma 2. For any u, v ∈ A∗ we have: (∃v′ ∈ σ(v) : u ¹h v′) iff (∃u′ ∈ σ(u) :
u′ ¹h v).

Proof. For u = 1, the assertion is true trivially. Suppose u 6= 1 and v′ ∈ σ(v) such
that u ¹h v′. Then, on one hand, v = xy, v′ = yx for some x, y ∈ A∗. On the
other hand, u = a1 . . . an and v′ = x0a1x1 . . . anxn with n ≥ 1, a1, . . . , an ∈ A,
x0, x1, . . . , xn ∈ A∗. Since v′ = yx and v′ = x0a1x1 . . . anxn, it follows that there
exists k, 0 ≤ k ≤ n, such that y = x0a1x1 . . . akx′k, x = x′′kak+1xk+1 . . . anxn with
xk = x′kx′′k , x′k, x′′k ∈ A∗. Therefore, v = xy = x′′kak+1xk+1 . . . anxnx0a1x1 . . . akx′k.
Hence, the word u′ = ak+1 . . . ana1 . . . ak ∈ σ(u) and u′ ¹h v. Conversely, sup-
pose u′ ∈ σ(u) such that u′ ¹h v. If u′ = u then u ¹h v′ with v′ = v. Assume
u′ 6= u and u = a1 . . . an with n ≥ 1, a1, . . . , an ∈ A. ¿From u′ ∈ σ(u), u′ 6= u
it follows that u′ = ak+1 . . . ana1 . . . ak for some k, 1 ≤ k < n. Since u′ ¹h v,
this implies v = x0ak+1x1 . . . anxn−ka1xn−k+1 . . . akxn with x0, x1, . . . , xn ∈ A∗.
Let us take v′ = a1xn−k+1 . . . akxnx0ak+1x1 . . . anxn−k, we have v′ ∈ σ(v) and
u ¹h v′.

From now on, we denote by Ω the set {p, s, p.i, s.i, i, p.si, s.si, si, p.scpi,
s.scpi, scpi, p.spi, s.spi, spi, p.h, s.h, h, scp, sp} and Ω′ = Ω−{p.h, s.h, h, scp, sp}.
Lemma 3. The relations ≺α, α ∈ Ω are transitive and length-increasing.

Proof. The fact that all the mentioned above relations are length-increasing is
immediate from their definitions. The transitivity of these relations, except for
≺p.scpi, ≺s.scpi, ≺scpi and ≺scp, is straightforward. We verify, for example, the
transitivity of ≺scpi. Let’s have u ≺scpi v ≺scpi w. By definition, ∃v′ : v′ ≺i

v, ∃v′′ ∈ σ(v′) : u ¹h v′′ and ∃w′ : w′ ≺i w, ∃w′′ ∈ σ(w′) : v ¹h w′′. This
implies, by Lemma 2, that ∃u′ ∈ σ(u) : u′ ¹h v′. ¿From v′ ≺i v, hence v′ ≺h v,
and from the transitivity of ≺h, it follows that u′ ≺h v. As u′ ≺h v ¹h w′′,
we have u′ ≺h w′′. By Lemma 2, ∃u′′ ∈ σ(u′) = σ(u) : u′′ ¹h w′. Again by
Lemma 2, ∃w′′′ ∈ σ(w′) : u ≺h w′′′. So u ≺scpi w.

Note that the relation ≺b is not transitive. That’s the reason why the em-
bedding problem for bifix codes cannot be solved by means of Theorem 1.

Lemma 4. For any X ⊆ A∗, π(X) and σ(X) are regular if so is X.

Proof. Let X be a regular language in A∗. We first prove that π(X) is regular.
Indeed, let M = {[x] | x ∈ A∗} be the syntactic monoid of X, where [x] is the
equivalence class of x w.r.t. the syntactic congruence of X. By abuse of language,
according as the context, about [x] we may understand either as an element of
M or as a subset of A∗. Since X is regular, M is finite. Denote by f : A∗ → M

119

the syntactic morphism of X and B = f(X). Then B =
⋃

x∈X [x]. The set V k of
k-vectors is, as easily verified, a commutative monoid with the componentwise
addition. Let g : A∗ → V k be the application mapping every x in A∗ into p(x)
in V k. It is not difficult to see that g is a morphism from A∗ onto V k. Next,
denote by h : V k → M the application which maps every p(x) in V k into [x] in
M . One can verify easily that h is a morphism from V k onto M . The φ = h ◦ g
is a morphism from A∗ onto M . For any x in A∗ we have

φ−1([x]) = g−1(h−1([x])) = g−1({p(y) | y ∈ [x]})
= {z ∈ A∗ | p(z) = p(y) with y ∈ [x]} = π([x]).

Hence

φ−1(B) = g−1(h−1(B)) =
⋃

x∈X

π([x]) = π(
⋃

x∈X

[x]) = π(X).

Thus π(X) is regular.
We next claim that σ(X) is regular. Since σ(X − {1}) = σ(X) − {1} and

since X−{1} is regular, we may suppose that 1 /∈ X. Without loss of generality,
we may assume there exists a two-pole finite automaton A = (Q, i, t) over A
with the set F of edges such that X = L(A). Let A′ = (Q′, i′, t′) be a copy of A
with F ′ = F . Next, we construct a two-pole finite automaton B = (Q ∪Q′, i, t′)
with the set of edges

G = F ∪ F ′ ∪ (t× {1} × i′).

Then, for any q ∈ Q − {i, t}, we construct a finite automaton Aq = (Q ∪ Q′ −
{i, t′}, q, q′) with the set of edges obtained from G by deletting all the edges
relating to i and t′. It is not difficult to verify the validity of the expression

σ(X) = X +
⋃

q∈Q−{i,t}
L(Aq),

which shows that σ(X) is regular.

For any set X we denote by P(X) the family of all subsets of X. Recall that
a substitution is a mapping f from B into P(C∗), where B and C are alphabets.
If f(b) is regular for all b ∈ B then f is called a regular substitution. When f(b)
is a singleton for all b ∈ B it induces a homomorphism from B∗ into C∗. Let #
be a new letter not being in A. Put A# = A ∪ {#}. Let’s consider the regular
substitutions S1, S2 and the homomorphism h defined as follows

S1 : A → P(A∗#), where S1(a) = {a,#} for all a ∈ A;
S2 : A# → P(A∗), with S2(#) = A+ and S2(a) = {a} for all a ∈ A;
h : A∗# → A∗, with h(#) = 1 and h(a) = a for all a ∈ A.

Factually, as we will see later, the substitution S1 will be used to mark the
occurrences of letters to be deleted from a word. The homomorphism h realizes
the deletion by replacing # by the empty word. The inverse homomorphism h−1

“chooses” in a word the positions where the words of A+ may be inserted, while

120

S2 realizes the insertions by replacing # by A+. Notice that regular languages are
closed under regular substitutions, homomorphisms and inverse homomorphisms
(see [5]).

Lemma 5. Given α ∈ Ω and X ∈ Cα. Then RX can be computed by the fol-
lowing expressions according to the case

(i) Case of prefix codes: R = I − IA+, where I = A∗ −XA− −XA+ and A−

stands for (A+)−1.
(ii) Case of suffix codes: R = I −A+I, where I = A∗ −A−X −A+X.
(iii) Case of p-infix codes: R = I − (IA+ + A+IA+), where I = A∗ − XA− −

A−XA− −XA+ −A+XA+.
(iv) Case of s-infix codes: R = I − (A+I + A+IA+), where I = A∗ − A−X −

A−XA− −A+X −A+XA+.
(v) Case of infix codes: R = I− (IA+ +A+I +A+IA+), where I = A∗−XA−+

A−X + A−XA− −XA+ −A+X −A+XA+.
(vi) Case of p-subinfix codes: R = I − S2(h−1(I) ∩ A∗#{#}), where I = A∗ −

h(S1(X) ∩A∗#{#})− S2(h−1(X) ∩A∗#{#}).
(vii) Case of s-subinfix codes: R = I − S2(h−1(I) ∩ {#}A∗#), where I = A∗ −

h(S1(X) ∩ {#}A∗#)− S2(h−1(X) ∩ {#}A∗#).
(viii) Case of subinfix codes: R = I − S2(h−1(I) ∩ ({#}A∗# ∪ A∗#{#})), where

I = A∗−h(S1(X)∩ ({#}A∗#∪A∗#{#}))−S2(h−1(X)∩ ({#}A∗#∪A∗#{#})).
(ix) Case of p-sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ A∗#{#}), where I =

A∗ − σ(h(S1(X) ∩A∗#{#}))− S2(h−1(σ(X)) ∩A∗#{#}).
(x) Case of s-sucyperinfix codes: R = I − S2(h−1(σ(I)) ∩ {#}A∗#), where I =

A∗ − σ(h(S1(X) ∩ {#}A∗#))− S2(h−1(σ(X)) ∩ {#}A∗#).
(xi) Case of sucyperinfix codes: R = I−S2(h−1(σ(I))∩({#}A∗#∪A∗#{#})), where

I = A∗ − σ(h(S1(X) ∩ ({#}A∗# ∪ A∗#{#}))) − S2(h−1(σ(X)) ∩ ({#}A∗# ∪
A∗#{#})).

(xii) Case of p-superinfix codes: R = I − S2(h−1(π(I)) ∩ A∗#{#}), where I =
A∗ − π(h(S1(X) ∩A∗#{#}))− S2(h−1(π(X)) ∩A∗#{#}).

(xiii) Case of s-superinfix codes: R = I − S2(h−1(π(I)) ∩ {#}A∗#), where I =
A∗ − π(h(S1(X) ∩ {#}A∗#))− S2(h−1(π(X)) ∩ {#}A∗#).

(xiv) Case of superinfix codes: R = I−S2(h−1(π(I))∩ ({#}A∗#∪A∗#{#})), where
I = A∗ − π(h(S1(X) ∩ ({#}A∗# ∪ A∗#{#}))) − S2(h−1(π(X)) ∩ ({#}A∗# ∪
A∗#{#})).

(xv) Case of p-hypercodes: R = I − S2(h−1(I)∩ (A∗#{#}A∗# − {#}+A+)), where
I = A∗ − h(S1(X)∩ (A∗#{#}A∗# −{#}+A+))− S2(h−1(X)∩ (A∗#{#}A∗# −
{#}+A+)).

(xvi) Case of s-hypercodes: R = I − S2(h−1(I) ∩ (A∗#{#}A∗# −A+{#}+)), where
I = A∗ − h(S1(X)∩ (A∗#{#}A∗# −A+{#}+))− S2(h−1(X)∩ (A∗#{#}A∗# −
A+{#}+)).

(xvii) Case of hypercodes: R = I − S2(h−1(I) ∩ (A∗#{#}A∗#)), where I = A∗ −
h(S1(X) ∩ (A∗#{#}A∗#))− S2(h−1(X) ∩ (A∗#{#}A∗#)).

121

(xviii) Case of sucypercodes: R = I − σ(S2(h−1(I) ∩ (A∗#{#}A∗#))), where I =
A∗ − h(S1(σ(X)) ∩ (A∗#{#}A∗#))− σ(S2(h−1(X) ∩ (A∗#{#}A∗#))).

(xix) Case of supercodes: R = I − π(S2(h−1(I) ∩ (A∗#{#}A∗#))), where I = A∗ −
h(S1(π(X)) ∩ (A∗#{#}A∗#))− π(S2(h−1(X) ∩ (A∗#{#}A∗#))).

Proof. We treat only the case of sucypercodes. For the other cases the argument
is similar. The proof follows from the following computations, which are not
difficult to be verified.

{u ∈ A∗ | u ≺scp X} = {u ∈ A∗ | u ≺h σ(X)} = h(S1(σ(X))∩(A∗#{#}A∗#));
{u ∈ A∗ |X ≺scp u} = σ({u ∈ A∗ |X ≺h u}) = σ(S2(h−1(X)∩(A∗#{#}A∗#)));
D = {u ∈ A∗ | u ≺scp X ∨X ≺scp u}

= h(S1(σ(X)) ∩ (A∗#{#}A∗#)) + σ(S2(h−1(X) ∩ (A∗#{#}A∗#)));
I = A∗ − h(S1(σ(X)) ∩ (A∗#{#}A∗#))− σ(S2(h−1(X) ∩ (A∗#{#}A∗#)));
L = {u ∈ I | I ≺scp u} = I ∩ σ(S2(h−1(I) ∩ (A∗#{#}A∗#)));
R = I − L = I − σ(S2(h−1(I) ∩ (A∗#{#}A∗#))).

Theorem 2. For any α ∈ Ω′, every regular code in Cα, is contained in a max-
imal code in Cα which is still regular.

Proof. By Lemma 3, the relations≺α, α ∈ Ω′, are transitive and length-increasing.
Given a regular code X in Cα. By Theorem 1(i), RX is a maximal code in Cα

which contains X. By Lemma 5, RX is still regular because it can be obtained
from X by applications of some operations preserving regularity.

6 Embedding Problem for Finite Case

Our aim in this section is to solve the embedding problem for the mentioned
above classes of codes in the finite case. Namely, we will exhibit algorithms to
construct, for every finite code X in a class Cα, α ∈ Ω, a finite maximal code in
the same class which contains X.

Theorem 3. For any α ∈ Ω, every finite code X in Cα, , is contained in a
finite maximal code Y in Cα with maxY = max X.

Proof. By Lemma 3, all the relations ≺α, α ∈ Ω, are transitive and length-
increasing. These relations satisfy the condition (∗) of Theorem 1 with k = 1.
Indeed, let u ∈ A∗ with |u| = n ≥ 1 and let v ∈ A∗ such that u 6≺α v and
|v| ≥ n+1. By the definition of ≺α, there exists always w of the length |v|−1 ≥
|u| such that w ≺α v. Next, given a finite code X in Cα. By Theorem 1(i)
and (ii), RX is a finite maximal code in Cα which contains X and max RX ≤
maxX − 1 + 1 = max X, hence max RX = max X. Setting Y = RX we obtain
the required to prove.

Denote by A[n] the set of all the words in A∗ whose length is less than or
equal to n. As an immediate consequence of Lemma 5 and Theorem 3 we have

122

Corollary 1. Given α ∈ Ω and X ∈ Cα with max X = n. Then the maximal
code RX in Cα which contains X can be computed by the following “restricted”
expressions according to the case.

(i) Case of prefix codes: R = I−IA+∩A[n], where I = A[n]−XA−−XA+∩A[n].
(ii) Case of suffix codes: R = I−A+I∩A[n], where I = A[n]−A−X−A+X∩A[n].
(iii) Case of p-infix codes: R = I − (IA+ + A+IA+) ∩ A[n], where I = A[n] −

XA− −A−XA− − (XA+ + A+XA+) ∩A[n].
(iv) Case of s-infix codes : R = I − (A+I + A+IA+) ∩ A[n], where I = A[n] −

A−X −A−XA− − (A+X + A+XA+) ∩A[n].
(v) Case of infix codes: R = I − (IA+ + A+I + A+IA+) ∩ A[n], where I =

A[n] −XA− + A−X + A−XA− − (XA+ + A+X + A+XA+) ∩A[n].
(vi) Case of p-subinfix codes: R = I − S2(h−1(I) ∩ A

[n−1]
{#}) ∩ A[n], where

I = A[n] − h(S1(X) ∩A∗#{#})− S2(h−1(X) ∩A
[n−1]
{#}) ∩A[n].

(vii) Case of s-subinfix codes: R = I − S2(h−1(I) ∩ {#}A[n−1]
) ∩ A[n], where

I = A[n] − h(S1(X) ∩ {#}A∗#)− S2(h−1(X) ∩ {#}A[n−1]
) ∩A[n].

(viii) Case of subinfix codes: R = I−S2(h−1(I)∩({#}A[n−1]
∪A

[n−1]
{#}))∩A[n],

where I = A[n]−h(S1(X)∩({#}A∗#∪A∗#{#}))−S2(h−1(X)∩({#}A[n−1]
∪

A
[n−1]
{#})) ∩A[n].

(ix) Case of p-sucyperinfix codes: R = I−S2(h−1(σ(I))∩A
[n−1]
{#})∩A[n], where

I = A[n] − σ(h(S1(X) ∩A∗#{#}))− S2(h−1(σ(X)) ∩A
[n−1]
{#}) ∩A[n].

(x) Case of s-sucyperinfix codes: R = I−S2(h−1(σ(I))∩{#}A[n−1]
)∩A[n], where

I = A[n] − σ(h(S1(X) ∩ {#}A∗#))− S2(h−1(σ(X)) ∩ {#}A[n−1]
) ∩A[n].

(xi) Case of sucyperinfix codes: R = I−S2(h−1(σ(I))∩({#}A[n−1]
∪A

[n−1]
{#}))∩

A[n], where I = A[n]− σ(h(S1(X)∩ ({#}A∗# ∪A∗#{#})))−S2(h−1(σ(X))∩
({#}A[n−1]

∪A
[n−1]
{#})) ∩A[n].

(xii) Case of p-superinfix codes: R = I−S2(h−1(π(I))∩A
[n−1]
{#})∩A[n], where

I = A[n] − π(h(S1(X) ∩A∗#{#}))− S2(h−1(π(X)) ∩A
[n−1]
{#}) ∩A[n].

(xiii) Case of s-superinfix codes: R = I −S2(h−1(π(I))∩{#}A[n−1]
)∩A[n], where

I = A[n] − π(h(S1(X) ∩ {#}A∗#))− S2(h−1(π(X)) ∩ {#}A[n−1]
) ∩A[n].

(xiv) Case of superinfix codes: R = I−S2(h−1(π(I))∩({#}A[n−1]
∪A

[n−1]
{#}))∩

A[n], where I = A[n] − π(h(S1(X)∩ ({#}A∗# ∪A∗#{#})))−S2(h−1(π(X))∩
({#}A[n−1]

∪A
[n−1]
{#})) ∩A[n].

(xv) Case of p-hypercodes: R = I−S2(h−1(I)∩ (A∗#{#}A∗#−{#}+A+)∩A
[n]
)∩

A[n], where I = A[n] − h(S1(X) ∩ (A∗#{#}A∗# − {#}+A+))− S2(h−1(X) ∩
(A∗#{#}A∗# − {#}+A+) ∩A

[n]
) ∩A[n].

(xvi) Case of s-hypercodes: R = I−S2(h−1(I)∩ (A∗#{#}A∗#−A+{#}+)∩A
[n]
)∩

A[n], where I = A[n] − h(S1(X) ∩ (A∗#{#}A∗# − A+{#}+))− S2(h−1(X) ∩
(A∗#{#}A∗# −A+{#}+) ∩A

[n]
) ∩A[n].

123

(xvii) Case of hypercodes: R = I − S2(h−1(I) ∩ (A∗#{#}A∗#) ∩ A
[n]
) ∩ A[n], where

I = A[n]−h(S1(X)∩(A∗#{#}A∗#))−S2(h−1(X)∩(A∗#{#}A∗#)∩A
[n]
)∩A[n].

(xviii) Case of sucypercodes: R = I − σ(S2(h−1(I) ∩ (A∗#{#}A∗#) ∩ A
[n]
) ∩ A[n]),

where I = A[n]−h(S1(σ(X))∩(A∗#{#}A∗#))−σ(S2(h−1(X)∩(A∗#{#}A∗#)∩
A

[n]
) ∩A[n]).

(xix) Case of supercodes: R = I−π(S2(h−1(I)∩(A∗#{#}A∗#)∩A
[n]
)∩A[n]), where

I = A[n]−h(S1(π(X))∩(A∗#{#}A∗#))−π(S2(h−1(X)∩(A∗#{#}A∗#)∩A
[n]
)∩

A[n]).

Example 2. Consider the p-subinfix code X = {a2, ba2} over A = {a, b}. Since
maxX = 3, by Corollary 1(vi), RX can be computed by the formula

R = I − S2(h−1(I) ∩A
[2]
{#}) ∩A[3],

where I = A[3] − h(S1(X) ∩ A∗#{#}) − S2(h−1(X) ∩ A
[2]
{#}) ∩ A[3]. We may

now compute RX step by step as follows.
S1(X) ∩A∗#{#} = {a#, #2, ba#, b#2, #a#, #3};
h(S1(X) ∩A∗#{#}) = {1, a, b, ba};
h−1(X) ∩A

[2]
{#} = {a2#};

S2(h−1(X) ∩A
[2]
{#}) ∩A[3] = a2A = {a3, a2b};

I = A[3] − {1, a, b, ba} − {a3, a2b} = {a2, ab, b2, aba, ab2, ba2, bab, b2a, b3};
h−1(I) ∩A

[2]
{#} = {a2#, ab#, b2#};

S2(h−1(I) ∩A
[2]
{#}) ∩A[3] = a2A + abA + b2A = {a3, a2b, aba, ab2, b2a, b3};

R = I − {a3, a2b, aba, ab2, b2a, b3} = {a2, ab, b2, ba2, bab}.

Example 3. For the sucypercode X = {acb, a2b2, cabc} over A = {a, b, c}, in a
similar way, using formulas in Corollary 1(xviii) with n = 4 instead, we obtain
the maximal sucypercode R = {a3, a2c, aca, acb, bac, b3, b2c, bcb, ca2, cba, cb2,
c3, a2b2, abab, ab2a, abc2, ba2b, baba, b2a2, bc2a, cabc, c2ab}, which contains X.

7 Tree Representations

Sometime a graph-theoretic representation of codes defined by binary relations
seems to be useful. Like the case of prefix codes, it facilitates the construction
of examples of codes and in many cases maximal codes containing a given code.
Moreover, as we shall see below, it makes more intuitive in understanding and
proving facts.

First, to every transitive binary relation ≺ on A∗ we associate an infinite
oriented graph as follows. The alphabet A is totally ordered, and words of equal
length are ordered lexicographically. Each word represents a node of the graph.
Words of small length are to the left of words of greater length, and words of
equal length are disposed vertically according to lexical ordering. For any nodes

124

u, v, there is an edge u → v iff u ≺ v and there is no w such that u ≺ w ≺ v.
Throughout we restrict ourself to length-increasing relations only. Thus, the
corresponding graph is a tree in some large sense, called the tree of A∗ w.r.t. ≺,
denoted by T (A∗,≺), or simply T when there is no risque of confusion. In the
case of the relation ≺p this is nothing but the literal representation of A∗ [1].
¿From now on, we refer indifferently to a node in T and the word it represents.
For example, one may say of the length of a node which means the length of the
word it represents, etc.

To a given subset X of A∗ we associate a subtree of T (A∗,≺) as follows. We
keep just the nodes representing the words of X and of {u | u ≺ v, v ∈ X}, and
all related edges. The tree obtained in this way is the tree of X w.r.t. ≺, denoted
by T (X,≺) (see Figure 2).

A set X of nodes is node-independent if there is no path from one node to
another. The set X is maximal if it is included properly in no node-independent
set. In other words, a node-independent set X is maximal if it becomes no more
a node-independent set by adding a new node. The following fact establishes
relationship between the codes defined by ≺, that is the independent sets w.r.t.
≺, and the node-independent sets of the tree T (A∗,≺).

Proposition 4. Let ≺ be a length-increasing transitive binary relation on A∗

which defines a class C≺ of codes. Let T (A∗,≺) be the tree of A∗ w.r.t. ≺. Then,
for any X ⊆ A∗, X is a (maximal) code in C≺ iff the corresponding nodes in
T (A∗,≺) constitute a (maximal, resp.) node-independent set.

Proof. We first prove that for any u, v ∈ A∗, u ≺ v iff there exists in T a path
p : u = u0 → u1 → · · · → uk = v from u to v, k ≥ 1. Indeed, let u ≺ v
and |u| = n. If n = 1 then v = a for some a ∈ A, and u = 1. Then, we have
p : u = 1 → a = v. Let now n > 1 and suppose the claim true for all the
words v′ of length less than n. If there is no word w such that u ≺ w ≺ v then,
by definition, there exists an edge u → v which we may take as the path p.
Otherwise, let w be the longest word such that u ≺ w ≺ v. Then, there exists
an edge w → v. Since |w| < n, by induction hypothesis, there exists some path
p′ : u →∗ w, from u to w. It suffices to put p : u →∗ w → v. Conversely, let
p : u = u0 → u1 → · · · → uk = v be a path of length k in T , k ≥ 1. With k = 1
then p is an edge, namely u → v, and by definition, u ≺ v, Let k > 1 and assume
the claim true for all k′ < k. Put p′ : u = u0 → · · · → uk−1. On one hand, by
induction hypothesis, u ≺ uk−1. On the other hand, uk−1 → v implies uk−1 ≺ v.
The transitivity of ≺ implies u ≺ v.

Now, using the above fact, it is easy to see: X is in C≺ ⇔ X is an indepen-
dent set w.r.t. ≺ ⇔ any two words u, v ∈ A are not in the relation ≺ ⇔ for any
u, v ∈ X, there is no path from one to other in T ⇔ X is a node-independent
set of T . Thus, the claim “X is a code in C≺ iff the corresponding nodes in
T (A∗,≺) constitute a node-independent set” holds true. The remaining claim
follows immediately from the above claim and definitions.

Remark 2. Proposition 4 can be used to obtain another proof [15], more intuitive,
of the item (i) in Theorem 1.

125

As seen in the above examples (Section 6), even for a small code X, com-
puting RX is not simple in practice. It is however much easier when using tree
representation of A∗ with respect to ≺ as shown in the following example.

Example 4. Consider again the p-subinfix code X = {a2, ba2}. As max X = 3,
for finding RX we may restrict to considering the tree T (A3,≺p.si) of the full
uniform code A3 w.r.t. ≺p.si. By virtue of Theorem 1 and Proposition 4, RX

can be obtained by applying the following algorithm: First, mark the nodes
represented by the words in X (namely: aa, baa). Then, delete all the nodes
depending on X (namely: 1, a, b, ba, aaa, aab). Next, among the rest (namely:
ab, bb, aba, abb, bab, bba, bbb) keep just the minimal nodes (namely: ab, bb, bab),
which together with X constitute RX , i.e. RX = {a2, ab, b2, ba2, bab} (see Fig-
ure 2).

1 ¶
¶

¶
¶

¶
¶7

S
S

S
S

S
Sw b

½
½

½
½

½
½

½
½

½
½

½
½>

"
"

"
"

"
"

"
"

"
"

""3

³³³³1

HHHHj

a

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z~

HHHHHHHHHHHHj

´
´

´
3́

PPPPq

bb PPPPPq

³³³³³1

ba -©©©©©*

ab -HHHHHj

²
±

¯
°aa PPPPPq

³³³³³1

bbb

bba

bab

²
±

¯
°baa

abb

aba

aab

aaa

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 2. Computing RX , X = {a2, ba2}, by using the tree T (A3,≺p.si)

References

1. J. Berstel, D. Perrin, Theory of Codes. Academic Press, New York, 1985.

2. V. Bruyère, M. Latteux, Variable-length maximal codes. Theoretical Computer
Science 98 (1992), 321–337.

126

3. V. Bruyère, L. Wang, L. Zhang, On completion of codes with finite deciphering
delay. European Journal of Combinatorics 11 (1990), 513–521.

4. A. Ehrenfeucht, G. Rozenberg, Each regular code is included in a maximal
regular code. RAIRO Theoretical Informatics and Applications 20 (1986), 89–96.

5. J. Hopcroft, J. Ullman, Formal Languages and Their Relation to Automata.
Addison-Wesley Publishing Company, Massachussetts, 1969.

6. M. Ito, H. Jürgensen, H. Shyr, G. Thierrin, Outfix and infix codes and related
classes of languages. Journal of Computer and System Science 43 (1991), 484–508.

7. M. Ito, G. Thierrin, Congruences, infix and cohesive prefix codes. Theoretical
Computer Science 136 (1994), 471–485.

8. H. Jürgensen, S. Konstatinidis, Codes. In: G. Rozenberg, A. Salomaa
(eds.), Handbook of Formal Languages. Springer, Berlin, 1997, 511–607.

9. N. H. Lam, Finite maximal infix codes. Semigroup Forum 61 (2000), 346–356.
10. A. A. Markov, An example of an independent system of words which cannot be

included in a finite complete system. Matematicheskie Zametki 1 (1967), 87–90 (in
Russian).

11. D. Perrin, Completing biprefix codes. Theoretical Computer Science 28 (1984),
329–336.

12. A. Restivo, On codes having no finite completion. Discrete Mathematics 17
(1977), 309–316.

13. A. Restivo, S. Salemi, T. Sportelli, Completing codes. RAIRO Theoretical
Informatics and Applications 23 (1989), 135–147.

14. H. Shyr, Free Monoids and Languages. Hon Min Book Company, Taichung, 1991.
15. D. L. Van, Embedding problem for codes defined by binary relations. Preprint

98/A22, Institute of Mathematics, Hanoi, 1998.
16. D. L. Van, On a class of hypercodes. In: M. Ito, T. Imaoka (eds.), Words,

Languages and Combinatorics III. World Scientific, 2003, 171–183.
17. D. L. Van, K. V. Hung, Characterizations for some classes of codes defined by

binary relations (submitted).
18. L. Zhang, Z. Shen, Completion of recognizable bifix codes. Theoretical Computer

Science 145 (1995), 345–355.

127

128

