Real Functions computed by Parametric
Weighted Finite Automata

German Tischler

Universitat Wiirzburg, Lehrstuhl fiir Informatik II, Am Hubland,
97074 Wiirzburg, Germany
tischler@informatik.uni-wuerzburg.de
http://wuw2.informatik.uni-wuerzburg.de/staff/tischler

Abstract. Weighted finite automata (WFA) are an extension of finite
automata that can be used to compute real functions and parametric
WFA (PWFA) are a multidimensional variant of WFA. This paper shows
that each PWFA computable set is computable by a PWFA that has an
alphabet cardinality of two. Further we show that real polynomials with
solely rational coefficients can be computed by PWFA that do not use
non-rational numbers. We study a class of PWFA that behaves like WFA
on mirrored input words and obtain the result that the only smooth real
functions definable by PWFA in this family are polynomials.

1 Introduction

A first definition of weighted finite automata (WFA) was given in [5]. A construc-
tive proof that these automata can be used to display polynomials on the unit
interval can be found in [3]. The statement that the only smooth (that means
derivable infinitely often everywhere in the unit interval) functions computable
by WFA are polynomials was first formulated in [4]. There is a new proof of this
result by Jarkko Kari et al. The result is used in section 4 but independent of
the method that is used to prove it. A formal definition of WFA is:
A WFA X is a quintuple (Q, X, W, I, F') where

. @ is a finite set of states

. X is a finite alphabet

W@ x XY x@Q— R is a weight function
. I:Q — IR is the initial distribution

. F:@Q — IR is the final distribution.

T W N~

Usually the weight function and initial and final distribution are written in
matrix and vector form. For each a € X there is a transition matrix A, where
Aq(i,7) = W(i,a,7). Iis understood as a row vector and F' as a column vector.
The real value fx (w) that X computes for an input word w = wyws ... w, € X%
is

k
fx(w)=T]] Auw,F. (1)
i=1

129

The word w = wyws ... € {0,1}* is interpreted as the real number

bin(w) = Zwﬂ_i. (2)

The extension of fx to words of infinite length w = wiws ... € X% is by using
a limit construction

fx(w) = nlgr;o fx(wiws ... wy,). (3)

If this limit does not exist, the function fx is not defined for w.
Parametric weighted finite automata (PWFA) were first defined in [1] as
a multidimensional variant of WFA. A formal definition is: A PWFA X is a
quintuple (Q, X, W, I, F) where
1. @ is a finite set of states
2. ¥ ={0,1,...,1 — 1} is a finite alphabet
3. W= (A0, A1,..., A1), As € RIC*IQ! are the transition matrices
4. I = (To, I1,..., Iq-1),1; € RI9! is a set of d initial distributions, the I; are
the rows of the matrix I
5. F € RI9 is the final distribution.

The point that the automaton computes on a word w = wyws ... w, € X* is

fx(w) =T]]AuwF (4)
i=1
and the computed set S(X) is
S(X) = () Szn(X) (5)
n=0
where
(o)
Son(X) = J 8:(X) (6)
and
Sn(X) = {fx (w)|lw e T} (7)
where the overline notation in (5) denotes the topological closure of the set under
the line. Thus a vector x is in S(X) if and only if there is a sequence vy, vg, ... of

words of increasing length such that z = lim;_,o fx (v;). The transition relation
Tx CQx x Xx X Qx xR of a PWFA X is defined as

Tx = {(po,l,p1,w) [po,p1 € Qx,l € Xx,w = Ax,(po,p1)} - (8)

We can understand WFA as a subset of PWFA in the sense that every WFA
computable function f can be computed as the set

{(z, f(2))|z € [0, 1]} . 9)

130

PWFA are known to be able to compute non-polynomial functions, e.g. the
exponential, sine and cosine functions and their inverse functions ([1]), some
rational functions and real polynomials on IR ([6]). It was also shown in [6] that
the set of PWFA computable sets is closed under set union and invertible affine
transformation.

In section 2 of this paper we show that every PWFA computable set can
be computed by a PWFA that has an alphabet cardinality of two. Section 3
provides a construction method for PWFA computing real polynomials on IR
without the need for non-rational weights if the polynomial to be displayed has
only rational coefficients. In section 4 we consider a family of PWFA that use
a certain family of hyperbolic iterated function systems (see [2] for reference)
for computing their first result component and show that the only smooth real
functions computable by automata in this family are polynomials.

2 PWFA alphabet cardinality

We examine the influence of the alphabet cardinality on PWFA computability of
sets. No PWFA computable set requires a PWFA with an alphabet cardinality
greater than 2 to be displayed. The proof is based on the following lemma.

Lemma 1. Let X be a PWFA with |Yx| = 282 for some k € IN. Then there
is a PWFA'Y with S(Y) = S(X) and | Zy| = 2F+1.

Proof. Y can be constructed as follows:

- QY:{Ovlv"'vg‘Q)d 71}
- Xy ={0,1,...,|¥x]|/2 -1}
— The first |Qx| rows and columns of Iy are Ix, the rest is filled with zero

elemeTnts.
— (Fy)" is (FxT Fx™ FxT)

For every state ¢ € Qx we introduce two new states ¢ = |Qx| + ¢ and ¢’ =
2|@x| + g. The edges in Y are defined in statements 10 and 11.

{(q,1,¢,1)|l € {0,1,...,2%¥ —1}} C Ty and

1€ Qx= {(q.1,¢", Dl e {2k, ... 2" 11} C Ty (10)
" (¢, 11/2],p,w) f 1 mod d
q, 2ap7w ET1Y i mod 2 = 0 an
(Q7l7p7w) eTx = (q//’ U/QLP,UJ) €Ty iflmod2=1. (].].)
Define
gla,m) = (a mod 2)2% +m for a € ¥x,m € N (12)
and .
h(a) = {§J for a € Yx. (13)

Let wiws ... w, € XYx*, then

fx(wiws . cwm) = fy (g(wr,)h(wi)g(wz, Yh(wz) ... g(wm, D) h(wpm)) (14)

131

for i € {0,1,...2F —1}. (14) describes the behavior of Y for all input words of
Y. Y produces the same set of output vectors as X. The number of words that
produce the vector v as an output of X is finite iff this is also true for Y. Thus

S(Y) = S(X). O

It is clear that for every PWFA with alphabet cardinality k there is a PWFA of
alphabet cardinality k£ + 1 that computes the same set. The transition matrix of
the new symbol can be chosen to be any of the matrices already present in the
PWFA. We can thus assume that every PWFA computable set is computable by
a PWFA that has an alphabet cardinality that is a power of 2. So the following
statement holds.

Theorem 1. Let X be a PWFA. There is a PWFA'Y of alphabet cardinality 2
with S(Y) = S(X).

3 Real Polynomials computed by PWFA

WFA are known to be able to compute polynomials on the unit interval. In [6]
two ways were presented for computing real polynomials on IR. Both of these
have in common that they use at least one weight that is not rational, even if
the polynomial to be displayed has only rational coefficients, so from a certain
point of view they are not finite automata. In this section we show that there
are PWFA computing polynomials on IR without using non-rational weights. We
start by providing a PWFA that computes a polynomial p on IN.

Lemma 2. Let p(x) = z¥ with k € IN for x € R. There is a PWFA X that
computes the set S(X) = {(n,n*) |n € IN}.

Proof. We construct a PWFA X’ that has the alphabet X'x = {0, 1, 2}. Let ¢(w)
denote the word that is obtained from w € X% by deleting all occurrences of
the symbol 2. For each input word w we interpret the word c(w) = b1by ... b, as
the natural number nato(c(w)) = > i~ b;2°. Let &1 = biby...by, € {0,1}* and
Ty = b2b3 N bm. Then
.’L‘lk = (2b1 + 2$2)k
= 2K (by + a0)" (15)
=2* 30, (5)brzh
that means
2k pk for by =0
wlk = { k2 . .
Y2k (k)xé for by =1

i

(16)

So the construction of X’ follows the scheme shown in figure 1. The label 2 is used
to give the automaton the possibility to keep the current result and produce it
infinitely often, so the set computed by the automaton is not empty, as it would
be, if every point were produced only once. X’ produces the set

{(naty(c(w)), natz(c(w))*)lw € X%} = {(n,n¥)n € 2IN} (17)

132

1:() 2%

Fig. 1. Polynomial automaton X’ computing set {(n,n*)|n € 2IN}

by construction. As (2n, (2n)*) = (2n, 2"n¥), the automaton X can be obtained
1

by applying the invertible affine transformation <(2) 9) to X'. O
2)6

The proof provided for lemma 2 is based on that given for the construction of

WFA computing polynomials in [3]. As WFA are closed under sum and multipli-

cation by a scalar, every real polynomial can be computed by a PWFA on IN. The

construction given in lemma 2 can be extended to computing real polynomials

on IR. Firstly we show this for Ry .

Lemma 3. Let p(z) = 2" be a real function with k € IN. There is a PWFA Z
that computes the set {(z,p(x))|z € R,z > 0}

Proof. The automaton Z is constructed by combining two automata. The first
is an automaton computing the set {z,p(z))|z € [0;1]} by using the standard
WPFA construction for polynomials, let the name of this subautomaton be Y. The
second is the automaton X as defined for p(z) = z* in the proof of lemma 2 but
stripping away label 2 and setting its final distribution to zero. We remap X so
it uses label 2 instead of 0 and 3 instead of 1. If Y makes a transition, we want X
not to change its configuration, so for every state ¢ € @ x we introduce the edges
(¢,0,q,1) and (¢,1,¢,1). Both X and Y have states for 2° to 2* in their context,
let them be denoted by 2% to 2% and 9 to 2% . For every transition (2%, 1, 7%, v)
where [€ {2,3} we add a transition (:EZX, l, x{h v). The complete scheme is shown
in figure 2. Let bin(w) = Y7, w; 27" for w = wyws ... wy, € (0]1)*. We observe
the behavior of Z for two different classes of input words w:

1. w € (0|]1)* that means there is no occurrence of the symbols 2 and 3 in
w. Then fz(w) = (bin(w),bin(w)*) as for usual WFA, thus {(z,z%)|z €
[0;1]} € S(2).

2. w e X%(2]3)(0]1)* that means there is at least one occurrence of the symbol
2 or 3 in w. As the configuration of Y is overwritten by that of X by every oc-
currence of the symbols 2 and 3, any occurrence of the symbols 0 and 1 before
the last 2 or 3 does not have any effect on the result of the computation. Let
w’ € (2]3)*(2]3)(0]1)* be the word w with all occurrences of 0 and 1 before

133

#1
1(1/2,0)

Y 1:(5) /2%

Fig. 2. Polynomial automaton Z that computes the set S(Z) = {z,z*|z € R}}

m

the last 2 or 3 erased. Let natq(v) = Y /", (v; —2)2"! for v = vivg... v €
{2,3}*. After reading the prefix of maximal length p of w in (2|3)*(2|3), ¥
is initialized to compute the set {(z +naty(p), (x +naty(p))*)|z € [0,1]}. As
nati(p) can be any natural number, the computed set is

Ui +i, (@ +i)})|a € 0,1]} € 5(2). (18)

=0

As the output for class 2 contains the output for class 1, the proof is completed.
O

Again, as WFA are closed under sum and multiplication by a scalar we can

obtain PWFA computing the set {(z, p(x))|z € IRZ} where p is an arbitrary real
polynomial. An automaton computing the set {(x,p(z))|z € R} for the same
polynomial can be constructed by using the set union construction presented in

134

[6] to build an automaton Z that computes the set

$(2) = (el e R§}U (7§) tp-aDlo e mg) 9
implying proposition 1.

Proposition 1. Let p(x) be a real polynomial with k € IN. There is a« PWFA Z
that computes the set {(x,p(x))|r € R}.

Let p(z) = Zf:o a;x* be a real polynomial. Let Z be the PWFA constructed
above to compute p on IR. All weights in Z are natural multiples of an integer
power of 2. The initial and final distribution contain products of the coefficients
a; and integer powers of 2. Thus if a; € Q for ¢ = 0,1,...,k, then Z does not
contain any non-rational numbers.

4 WFA input reversion

In this section we consider the set of smooth functions computable by a certain
family of PWFA on the unit interval. Let d € (0,1). Then we define the iterated
function system (IF'S, see e.g. [2] for reference) D as the set of functions

do(z) = dx

di(z) = dr + (1—d) . (20)

The system D is hyperbolic and has the attractor [0,1]. We first show that
polynomials on the unit interval can be computed while using this IFS for the
first component of a PWFA.

Lemma 4. Let p(z) = z* be a real function for k € IN. There is a PWFA X
that computes the set {(z,p(z))|z € [0,1]} while the first component of X is
computed as the IFS D.

Proof. The automaton for the IFS D is shown in figure 3. The recursion for z*

Fig. 3. IFS automaton for system D

can be written as
eo(z() — (dzo)* = d*af K " ‘
er(af) = (dwo + (1= d)* = S, () diah(1—d)= .

7

135

1:()d(1-d)*?

1(5)(1-d)<

1(x)(1-d)f

Fig. 4. z* automaton for first component computed as the IFS D

The construction scheme is shown in figure 4. Thus the automaton X can be
built by combining the automata in figure 3 for the first component and 4 for
the second. (]

As WFA are closed under sum and multiplication by a constant, we have the
following.

Theorem 2. Let p(z) = Zf:o a;x' a real polynomial for k € IN. For each
d € (0,1) there is a PWFA X that computes the set {(z,p(z))|x € [0,1]} while
computing the first component as the IFS D.

It is remarkable that unlike the usual WFA construction for polynomials we
cannot use one single line-automaton to display a complete polynomial with
more than one non-zero coefficient. Clearly the construction for z**! k € IN
contains the construction for z* as a subgraph. It differs in two features:

1. The subautomaton for z* contained in 2**! has outgoing edges.
2. Building the automaton for z**! from z* the final distribution is changed
instead of the initial distribution.

We now show that polynomials are the only smooth (that means having all
derivates everywhere on the unit interval) real functions computable by PWFA
using the IFS D for computing the first component if d = % This is done by
reducing such automata to WFA. We assume that the proof for the statement
that the only smooth functions computable by WFA are real polynomials would
also hold for a modified definition of WFA where the splitting of the unit interval
is not performed at the point % but at some d € (0,1).

Lemma 5. Let X be a PWFA computing the smooth real function f on the
unit interval as the set S(X) = {(xz, f(x))|z € [0,1]} while computing the first

136

component as the IFS D with d = % There is a WFA'Y that computes the same
function.

Proof. We assume without loss of generality that there is an upper bound to the
norms of all vectors produced by computations of X. Let w = wyws ... w,, € X%.
The first component of the result vectors of X is computed as
z(w)=3((...3 (%wl) + 3wz...) + FWm—1) + FWm
m

L 22
= E:il% 1+1wi : 22)

That means the input order is reversed in comparison to WFA where the function
bin(w) =Y = w; (23)

is used for the interpretation of input words as abscissae. Let r(w) denote the
reversed word of w. Apparently z(r(w)) = bin(w) and bin(r(w)) = z(w) for w
in X'%. Without loss of generality we assume that the set of states X uses to
compute its first component is disjoint from the set of states it uses to compute
the second. Then we can decompose X into two independent WFA computing
the components of the result vectors of X. Let these subgraphs of X be named
Y’ for the first component and Y for the second. Then equation 24 holds for
W= WW2 ... Wy € Y.

(.1?(’LU), f(x(w)) = (IY’ H:il AYL:J1 Fy/, Iyu H:il Aylluli FY//)
m T T m T T
- (IY/ (Hi:l AYfI’m—H—l) Byr, Iy (Hi:l AY”) FY”)

Wi —i+41

= (R0 (T ay,)i rf (T AT,) 1)

Wy — i1 Wi — 41
= <bin(r(w)),F$~ (H?ll A)T%, '+1) 13,,)
(24)
So we obtain the WFA Y from Y by transposing the transition matrices of Y
and swapping the initial and final distribution of Y. Possible differences due to
the different definitions of convergence for WFA and PWFA are ruled out here,

because f is

— smooth (especially continuous) and
— a function.

O

Every smooth real function computable by a WFA is a polynomial, so proposition
2 follows.

Proposition 2. Let X be a PWFA computing the smooth real function f on the
unit interval as the set S(X) = {(x, f(x))|x € [0,1]} while computing the first

component as the IFS D with d = % Then f is a polynomial.

137

5 Conclusion

In this paper we showed that every PWFA computable set is computable by
a PWFA that has an alphabet cardinality of 2. We further showed that real
polynomials on IR with solely rational coefficients can be displayed by PWFA
using only rational weights and rational initial and final distributions. PWFA
do not gain computational power regarding the representability of smooth real
functions if the usual interpretation of words for WFA as real numbers happens
on reversed words.

Acknowledgment

We thank Paula Steinby for some early discussions on the proof of lemma 5 and
the two referees for their valuable comments on a previous version of this paper.

References

1. J. Albert, J. Kari, Parametric Weighted Finite Automata and Iterated Function
Systems Proceedings L’Ingenieur et les Fractales - Fractals in Engineering, Delft,
248-255, 1999.

2. M. Barnsley, Fractals Fverywhere, 2nd ed. Boston, Academic Press, 1993.

3. K. Culik II, J. Karhuméki, Finite automata computing real functions SIAM
Journal on Computing 23/4, 789-814, 1994.

4. D. Derencourt, J. Karhumé&ki, M. Latteux, A. Terlutte, On Computational Power
of Weighted Finite Automata Lecture Notes in Computer Science 629, 236-245,
1992.

5. M. P. Schiitzenberger, On the definition of a family of automata Information and
computation 4, 245-270, 1961.

6. G. Tischler, Properties and applications of parametric weighted finite automata
submitted.

138

