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Abstract. The theory of two-dimensional languages as a generalization
of formal string languages was motivated by problems arising from image
processing and pattern recognition and also concerns models of paral-
lel computing. Here we investigate power series on pictures and assign
weights to different devices, ranging from tiling systems to picture au-
tomata. We will prove that, for commutative semirings, the behaviours of
weighted picture automata are precisely alphabetic projections of series
defined in terms of rational operations and also coincide with the families
of series characterized by weighted tiling or weighted domino systems.
Thus we obtain a robust definition of recognizable picture series. The
theory of two-dimensional languages is obtained when restricting to the
boolean semiring. These new equivalent weighted picture devices can be
used to model several interesting application-examples, e.g. the inten-
sity of light of a picture (interpreting the alphabet as different levels of
gray) or the maximal amplitude of a monochrome subpicture of a colored
picture.

1 Introduction

In the literature, a variety of formal models to recognize or generate two-dimen-
sional objects, called pictures, have been proposed [3, 9, 11, 13]. This research
was motivated by problems arising from the area of image processing and pat-
tern recognition [7, 15], and also plays a role in frameworks concerning cellular
automata and other models of parallel computing. Different authors obtained an
equivalence theorem for picture languages describing languages in terms of types
of automata, finite set of tiles, rational operations or monadic second order logic
[8, 10, 11, 13].

In this paper, we will investigate weighted picture automata and their be-
haviour. The interesting model of weighted quadrapolic automata was introduced
by Bozapalidis and Grammatikopoulou [4]. These are automata operating in a
natural way on pictures and whose transitions carry weights; the weights are
taken as elements from a given semiring. Bozapalidis and Grammatikopoulou
showed that the behaviours of such automata are closed under certain opera-
tions on series. This was our starting point for raising the question whether the
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converse holds, i.e. whether recognizable series and projections of rational pic-
ture series coincide. The aim of this paper is to prove this equivalence for any
alphabet and any commutative semiring of weights. We characterize the fam-
ily of recognizable picture series also by using tiling and domino systems, and
thus obtain a robust definition of recognizable picture series. In the proofs one
has to be careful when arguing in an automaton which might have several suc-
cessful paths for an input picture. If necessary one has to consider or construct
unambiguous picture automata in order not to count weights twice.

These equivalent weighted picture devices can be used to model several inter-
esting application-examples, e.g. the intensity of light of a picture (interpreting
the alphabet as different levels of gray) or the amplitude of a monochrome sub-
picture of a colored picture.

The organization of the paper is as follows. In Section 2, we give examples of
pictures with weights and recall basic concepts of the theory of two-dimensional
languages. Next, in Section 3 we introduce the definitions of picture series, ra-
tional operations on them and the concept of a weighted picture automaton.
Section 4 gives the main theorem on the coincidence of recognizable series with
projections of rational series. In Section 5 we compare new models of weighted
tiling systems and weighted domino systems as extensions of local and hv-local
picture languages with the family of recognizable series. In Section 6, we give
an equivalence theorem for the introduced different devices in order to describe
picture series.

Further characterizations, e.g. by weighted 2-dimensional online tesselation
automata or in terms of a weighted monadic second order logic are omitted here
due to lack of space, but will be contained in a full version of this paper [14].

2 Pictures and Examples for Pictures with Weights

We summarize basic terminology and results in the theory of two-dimensional
languages, formal power series and weighted finite automata, required for this
paper. For more details see [1, 2, 6, 9, 11, 12, 16].

Let Σ be a finite alphabet. A picture over Σ is defined as a non-empty1 two-
dimensional rectangular array of elements of Σ. A picture language then is a set
of pictures. We collect all pictures over Σ in Σ++. We write p(i, j) or pi,j for
the component of p at position (i, j). Furthermore, we let l1(p) be the number
of rows and l2(p) be the number of columns of p. The pair (l1(p), l2(p)) gives the
size of p. The notion of Σm×n comprises all pictures with size (m,n).

Next, we give examples of functions S : Σ++ → R and T : Σ++ → N.

Example 2.1. Let D ⊂ [0, 1] be a finite set of discrete values and L ⊆ D++ a
recognizable picture language. Consider the function S : D++ → R defined by

S(p) =

{∑
i,j pi,j p ∈ L,

0 otherwise.

1 We assume a picture to be non-empty for technical simplicity, as in [3, 11, 13].
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One could interpret the values in D as different levels of gray [5]. Then, for each
picture p ∈ L, the series S provides the total value S(p) of light of p.

Example 2.2. Let C be finite, modeling colors and consider T : C++ → N,
defined by C++ 3 p 7→ max{l1(q) · l2(q) | q is a monochrome subpicture of p}.

Functions S from Σ++ into R or, more generally, a semiring K will be called
picture series. The next section gives tools to describe the functions S and T
of the above examples as the behaviours of weighted picture automata over
certain semirings. We will also consider rational operations on picture series. For
this, we will need two different, partial concatenations for pictures: the column
concatenation p : q juxtaposes two pictures next to each other provided they
have the same height, i.e. for p ∈ Σm×k, q ∈ Σm×l:

r := p: q ∈ Σm×(k+l), r(i, j) =

{
p(i, j) j ≤ k

q(i, j − k) j > k.

The row concatenation p ª q of two pictures p and q can be defined similarly
for pictures having identical width. These definitions can be extended to lan-
guages as usual and can then also be iterated, that is to say (similar for row
concatenation), L:

1
:= L, L:

k+1
:= L:

k : L and L:
+

:=
⋃

k≥1 L:
k

.
For any two alphabets Σ and Γ , a mapping π : Γ → Σ is called (alphabetic)

projection. It can be lifted pointwise to pictures and picture languages as usual;
the first extension will also be indicated by π : Γ++ → Σ++. If not otherwise
indicated, we do not distinguish between a word w and the picture having only
row (or only column) w.

For the string case, there are important definitions for recognizable (string)
series over Σ (denoted by Krec〈〈Σ∗〉〉) as behaviours of weighted finite automata
(WFA). The class of rational (string) series (denoted by Krat〈〈Σ∗〉〉) can be con-
structed from polynomials by applying +, · and ∗ on proper series. We assume
the reader is familiar with Schützenberger’s theorem for rational and recogniz-
able formal power series [17], as well as with the equivalence theorem giving
different devices to characterize recognizable picture languages [9].

Theorem 2.3 (Schützenberger [17]). A formal power series is rational if
and only if it is the behaviour of some weighted finite automaton.

3 Picture Series and Weighted Automata

A semiring (K, +, ·, 0, 1) is a structure K such that (K, +, 0) is a commutative
monoid, (K, ·, 1) is a monoid, multiplication distributes over addition, and x·0 =
0 = 0 · x for all elements x ∈ K. In case the multiplication is commutative, K is
called commutative. Examples of semirings useful to model problems in operation
research and carrying quantitative properties for many devices include e.g. the
Boolean semiring B = ({0, 1},∨,∧, 0, 1), the natural numbers (N,+, ·, 0, 1), the
tropical (or min-plus) semiring T = (N ∪ {∞}, min, +,∞, 0), the arctical (or
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max-plus) semiring Arc = (N ∪ {−∞}, max,+,−∞, 0), the language-semiring
(P(Σ∗),∪,∩, ∅, Σ∗) and ([0, 1],max, ·, 0, 1) (to capture probabilities).

Subsequently, K will always denote a commutative semiring. Let Σ be an
alphabet. Note that there is a strong connection to the theory of formal power
series since much terminology carries over to pictures.

A picture series is a mapping S : Σ++ → K. We let K〈〈Σ++〉〉 comprise
all picture series. We write (S, p) for S(p), then a series S often is written as a
formal sum S =

∑
p∈Σ++(S, p). The set supp(S) := {p ∈ Σ++ | (S, p) 6= 0} is

the support of S. Series having finite support are called polynomials and form the
set K〈Σ++〉. We now define the rational operations ⊕,¯,:,ª : (K〈〈Σ++〉〉)2 →
K〈〈Σ++〉〉 referred to as sum, Hadamard product, horizontal multiplication and
vertical multiplication, respectively, and also :+,ª+ : K〈〈Σ++〉〉 → K〈〈Σ++〉〉,
the horizontal star and vertical star, as follows. Fix S, T ∈ K〈〈Σ++〉〉 and p ∈
Σ++. Then we set

(S ⊕ T, p) := (S, p) + (T, p) and (S ¯ T, p) := (S, p) · (T, p)

(S : T, p) :=
X

p1:p2=p

(S, p1) · (T, p2) and (S ª T, p) :=
X

p1ªp2=p

(S, p1) · (T, p2)

(S:
+

, p) :=
X

p1:...:pn=p
n≥1

(S, p1) · . . . · (S, pn)

(Sª
+

, p) :=
X

p1ª...ªpn=p
n≥1

(S, p1) · . . . · (S, pn).

The star operations are not partial since every picture is nonempty. We de-
fine the (pointwise) scalar multiplications with elements of the semiring, i.e. for
k ∈ K and K〈〈Σ++〉〉, we put (k ·S) =

∑
p∈Σ++ k · (S, p) ∈ K〈〈Σ++〉〉, as usual.

For a language L ⊆ Σ++, the characteristic series 1L : Σ++ → K is defined
by (1L, p) = 1 if p ∈ L, and (1L, p) = 0 otherwise. For K = B, the correspon-
dence L ↔ 1L gives a natural bijection between languages over Σ and series in
B〈〈Σ++〉〉.

Definition 3.1. A picture series S ∈ K〈〈Γ++〉〉 is called rational if it is ob-
tained from a finite set of polynomials by finitely many applications of ⊕,¯,:,ª,
:+ and ª+. The family of rational series over a semiring K and an alphabet Γ
will be denoted by Krat〈〈Γ++〉〉.

Now, extending projections for languages to series, for π : Γ++ → Σ++ and
S′ ∈ K〈〈Γ++〉〉, we set

(π(S′), p) :=
∑

π(p′)=p

(S′, p′) for each p ∈ Σ++.

It defines a series π(S′) ∈ K〈〈Σ++〉〉 which we call the projection of S′ by π.
We say S is a projection of a rational series if there exists an alphabet Γ , a
series S′ ∈ Krat〈〈Γ++〉〉 and a projection π : Γ++ → Σ++ with S = π(S′).
We denote the family of series over Σ that are projections of rational series by
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KPrat〈〈Σ++〉〉. Next we define weighted picture automata. A similar definition
for unweighted picture automata was shown to compute precisely the recogniz-
able picture languages [4].

Definition 3.2 ([4]). A weighted (quadrapolic) picture automaton (WPA) is a
6-tuple A = (Q, R, Fw, Fs, Fe, Fn) consisting of a finite set Q of states, a finite set
of rules R ⊆ Σ×K×Q4, as well as four poles of acceptance Fw, Fs, Fe, Fn ⊆ Q.

Given r = (a, k, qw, qs, qe, qn) ∈ R, we denote by l(r) its input label a, by
weight(r) its weight k and corresponding to the four poles σw(r) := qw, σs(r) :=
qs, σe(r) := qe, σn(r) := qn.

A run (or computation) c in A is an element in R++ with certain compatibility
properties, more precisely, for c = (ci,j) ∈ Rm×n we have

∀i ≤ m− 1, j ≤ n : σs(ci,j) = σn(ci+1,j), ∀i ≤ m, j ≤ n− 1 : σe(ci,j) = σw(ci,j+1).

A run is successful if it has its (outer) pole-states in the respective poles of
acceptance, that is to say:

∀i ≤ m, j ≤ n : σw(ci,1) ∈ Fw, σs(cm,j) ∈ Fs, σe(ci,n) ∈ Fe, σn(c1,j) ∈ Fn. (1)

We extend the functions l and weight to runs by setting for c = (ci,j) ∈ R++:
l(c)(i, j) := l(ci,j) and weight(c) :=

∏
i,j weight(ci,j), giving the underlying

input picture and the weight of a computation, respectively. For a successful run
c with l(c) = p we will shortly write c ∈ Fw

Fn−p−
Fs

Fe for (1). The weight of a picture

p is the sum of the weights of all successful runs with input picture p. It defines
a picture series ‖A‖ : Σ++ → K with (‖A‖, p) =

∑
c∈Fw

Fn−p−
Fs

Fe

weight(c), called

the behaviour of A. We also say that A computes ‖A‖. If p has no successful run
in A, ‖A‖ sends p to 0. We call A unambiguous if every picture has at most one
successful path.

Definition 3.3. For a given alphabet Σ, the family of picture series computed
by weighted picture automata will be denoted by Krec〈〈Σ++〉〉, elements of which
are referred to as recognizable series.

Let us consider again Examples 2.1 and 2.2. By simulating an unweighted pic-
ture automaton recognizing L and assigning weights, one can prove that the func-
tion S is computable by a WPA over the tropical semiring, i.e. S ∈ Trec〈〈D++〉〉.
Also, there is an automaton over the max-plus semiring Arc computing T . Here,
for a picture p, the automaton provides one successful path for every different
monochrome subpicture of p. Since we get the behavior by adding the weights
for successful runs reading p, in Arc, the maximal size is extracted.

4 The Kleene-Schützenberger Theorem for Picture Series

For the rest of the paper, let Σ be an alphabet and K a commutative semiring.
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4.1 Projections of Rational Series are Recognizable

The aim of this subsection is to show that projections of rational series are
behaviours of WPA. We will give the basis of this structural induction and use
the results in [4, Section 4] to obtain that the recognizable series are closed
under rational operations and projections. Clearly, the monomials, i.e. series
with supports as singletons, are recognizable:

Lemma 4.1. Let p ∈ Σ++ and k ∈ K. Then k · 1{p}, k · 1Σ++ ∈ Krec〈〈Σ++〉〉.
Proof. Let p ∈ Σm×n and k ∈ K. The automaton A =

({0, . . . , max{m,n}}, R,

{0}, {m}, {n}, {0}) defined by

R =
{
(pi+1,j+1, c, j, i + 1, j + 1, i) | 0 ≤ i ≤ m, 0 ≤ j ≤ n

}

such that c = k if (i, j) = (0, 0) and c = 1 otherwise, computes ‖A‖ = k · 1{p}.
Similar one could give an automaton for k · 1Σ++ .

Lemma 4.2 ([4]). Krec〈〈Σ++〉〉 is closed under ⊕,¯,:,ª,:+,ª+.

Note, that using this lemma, Krec〈〈Σ++〉〉 is also closed under scalar multipli-
cation, since for k ∈ K and S ∈ Krec〈〈Σ++〉〉, we get k · S = S ¯ (k · 1Σ++).

Lemma 4.3 ([4]). Let Σ, Γ be two alphabets and π : Γ++ → Σ++ a projection.
For S ∈ Krec〈〈Γ++〉〉 it follows π(S) ∈ Krec〈〈Σ++〉〉.

Now the following theorem is immediate by Lemmas 4.1, 4.2 and 4.3.

Theorem 4.4. KPrat〈〈Σ++〉〉 ⊆ Krec〈〈Σ++〉〉.

4.2 Recognizable Series are Projections of Rational Series

The idea of the other direction of a Kleene-Schützenberger Theorem for pictures
is to convert the automaton into a “deterministic” device of a certain type via
a projection. The behaviour of this deterministic device will be proved to be a
rational series. Next, we define the concept of rule deterministic weighted picture
automata. We will use Schützenberger’s Theorem for recognizable and rational
power series (Theorem 2.3).

Definition 4.5. A weighted picture automaton over the alphabet Γ is called rule
deterministic if for every input pixel a there is at most one rule with label a.

There is a natural correspondence between formal power series reading words
and picture series reading only rows or only columns. We can consider a picture
having only one row (resp. one column) also as word over Σ, and we will not
distinguish notations of these two cases.

Lemma 4.6. Let S : Σ∗ → K be a rational formal power series over words.
There exists S′ ∈ Krat〈〈Σ++〉〉 such that for all p ∈ Σ++, we have

S′(p) =

{
S(p) p ∈ Σ1×n for some n ∈ N,

0 otherwise.
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Proof. Since the class of rational (string) series is closed under the Hadamard
product [6], the series S¯1Σ∗\{ε} is rational. We can naturally embed the poly-
nomials of K〈〈Σ+〉〉 into K〈Σ++〉 having their supports in Σ1×N; the operations
+, ·, ∗ are simulated by ⊕,:,:+.

Similarly one proves the result in the vertical direction.

Lemma 4.7. Let S : Σ∗ → K be a rational formal power series over words.
There exists S′ ∈ Krat〈〈Σ++〉〉 such that for all p ∈ Σ++, we have

S′(p) =

{
S(p) p ∈ Σn×1 for some n ∈ N,

0 otherwise.

Proposition 4.8. Let S ∈ Krec〈〈Γ++〉〉 be a series computed by a rule deter-
ministic WPA. Then S is rational.

Proof. Let A = (Q,R, Fw, Fs, Fe, Fn) be a rule deterministic WPA for S. We
group the proof into 3 steps and show that A computes a rational picture series.
For a ∈ Γ , we set r(a) = (a, k, q1, q2, q3, q4) if (a, k, q1, q2, q3, q4) ∈ R.

Step 1 We use the horizontal direction of the rules in R to define a WFA

Ah = (Q,Eh, Ih, Fh) over words, as follows. Let Eh ⊆ Q×Γ ×K ×Q be the set
of transitions, defined by

(q1, a, k, q3) ∈ Eh ⇔ ∃r = (a, k, q1, q2, q3, q4) ∈ R,

and put

Ih(q) =

{
1 q ∈ Fw,

0 otherwise,
Fh(q) =

{
1 q ∈ Fe,

0 otherwise

as initial and final weight functions.
Then Ah is a WFA having successful computations for all words correspond-

ing to rows which have a run in A leading from Fw to Fe. For such a row
w = a1a2 · · · an(ai ∈ Γ ), since A is rule deterministic, we have

(‖Ah‖, w) = 1 ·
( ∏

1≤i≤n

weight(r(ai))
)
· 1.

All other words in Γ ∗ are mapped to 0.
Using Theorem 2.3 and Lemma 4.6 we conclude that there exists a rational

picture series Sh such that for all p ∈ Γ 1×N we have (Sh, p) = (‖Ah‖, p), elements
not in Γ 1×N are mapped to 0.

Step 2 Similarly, we use the vertical direction of rules in R for the definition

of a WFA Av = (Q,Ev, Iv, Fv) over the Boolean semiring where Ev ⊆ Q× Γ ×
{0, 1} ×Q is the set of transitions, defined by

(q4, a, 1, q2) ∈ Ev ⇔ ∃r = (a, k, q1, q2, q3, q4) ∈ R,
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and

Iv(q) =

{
1 q ∈ Fn,

0 otherwise,
Fv(q) =

{
1 q ∈ Fs,

0 otherwise

as weight functions.
Then Av is an automaton having successful computations for all words cor-

responding to columns which have a run in A leading from Fn to Fs. Such a
column w = a1a2 · · · am(ai ∈ Γ ), again, since A is rule deterministic, satisfies
(‖Av‖, w) = 1. All other words are mapped to 0.

Now, as before, Theorem 2.3 and Lemma 4.7 provide a rational picture series
Sv over B such that for all p ∈ ΓN×1 : (Sv, p) = (‖Av‖, p).

Step 3 (C) Claim: ∀x ∈ Γ++ :
(‖A‖, x)

=
(
Sh

ª+
, x

) · (Sv
:+

, x
)
.

For pictures x = (xi,j)(1 ≤ i ≤ m, 1 ≤ j ≤ n) where every row has a succussful
run in Ah, the picture series Sh

ª+
is a rational series that maps x to the product

of the weights of the composed rules for pixels of x in A. The other pictures are
mapped to 0. We get

(
Sh

ª+
, x

)
=

∏

i≤m,j≤n

weight(r(xi,j)). (2)

Analogously, for a pictures y = (yi,j) where every column has a succussful run
in Av we get (

Sv
:+

, y
)

= 1. (3)

The other pictures are mapped to 0.
Now, to prove (C), let x = (xi,j) ∈ Γ++(1 ≤ i ≤ m, 1 ≤ j ≤ n). We

distinguish between three cases. First, assume x ∈ Γm×n such that there ex-
ists an i ∈ {1, . . . , m} and (xi,1xi,2 · · ·xi,n) ∈ Γ 1×n has no run in A satisfying
σw(r(xi,1)) ∈ Fw, σe(r(xi,n)) ∈ Fe. Then with the definition of ‖A‖ and (2) we
conclude

(‖A‖, x)
= 0 =

(
Sh

ª+
, x

)
, hence: (C).

For the second case, let x ∈ Γm×n such that there exists an j ∈ {1, . . . , m}
with (x1,jx2,j · · ·xm,j)T ∈ Γm×1 having no run in A satisfying σn(r(x1,j)) ∈ Fn,
σs(r(xm,j)) ∈ Fs. Then using (3), we get

(‖A‖, x)
= 0 =

(
Sv

:+
, x

)
, hence (C).

For the remaining case, again, let x ∈ Γm×n. For every row in x, there exists
a unique computation leading in A from Fw to Fe, that is, for all 1 ≤ i ≤ m and
all 1 ≤ j ≤ (n− 1):

σe(r(xi,j)) = σw(r(xi,j+1)), σw(r(xi,1)) ∈ Fw, σe(r(xi,n)) ∈ Fe. (4)

On the other hand, for every column in x there exists a unique computation
in A having the northern state in Fn and the southern state in Fs, i.e., for all
1 ≤ i ≤ m− 1 and all 1 ≤ j ≤ n:

σs(r(xi,j)) = σn(r(xi+1,j)), σn(r(x1,j)) ∈ Fn, σs(r(xm,j)) ∈ Fs. (5)
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With (4) and (5), c :=
(
r(xi,j)

)
i,j

forms a successful computation for x in A.
Since A is rule deterministic, there is at most one computation for x. We obtain

(‖A‖, x)
=

∏

i≤m,j≤n

weight(r(xi,j))
(2)
=

(
Sh
ª+

, x
) · 1

(3)
=

(
Sh

ª+
, x

) · (Sv
:+

, x
)
.

Therefore, claim (C) holds and thus (using Definition 3.1)

‖A‖ = Sh
ª+ ¯ Sv

:+ ∈ Krat〈〈Γ++〉〉. (6)

Next we show that every recognizable series is the projection of a series
computed by a rule deterministic automaton. The idea is to encode the rules
of the given automaton into the new alphabet. Then we will prove that this
encoding can be reversed by a projection.

Proposition 4.9. Let A be a WPA over Σ. There exists a rule deterministic
WPA A′ over an alphabet Γ and a projection π : Γ++ → Σ++ satisfying ‖A‖ =
π(‖A′‖).

Proof. Let A = (Q,R, Fw, Fs, Fe, Fn) be a WPA over Σ and K. We put Γ := R
and define a rule deterministic WPA over Γ as A′ = (Q, R′, Fw, Fs, Fe, Fn) with

R′ :=
{(

(a, k, q1, q2, q3, q4), k, q1, q2, q3, q4

) | (a, k, q1, q2, q3, q4) ∈ R

}
.

For every pixel (a, k, q1, q2, q3, q4) ∈ Γ there is at most one rule with label
(a, k, q1, q2, q3, q4) in A′. We define a projection π : Γ++ → Σ++ by mapping
pixels (a, k, q1, q2, q3, q4) to a. We claim that ‖A‖ = π(‖A′‖) (∗).

Let x ∈ Σm×n. If there was no successful run of x in A then there is no
picture in Γ++ with a successful run in A′ which is mapped to x by π, so (∗)
holds. For the other case, let {c1, c2, . . . , cs} ⊆ R++ be the set of successful runs
for x in A. These runs belong to successful runs {c′1, c′2, . . . , c′s} ⊆ R′++ in A′

such that

∀1 ≤ i ≤ s : π(l(c′i)) = x,
∑

1≤i≤s

weight
(
ci

)
=

∑

1≤i≤s

weight
(
c′i

)
.

Since there cannot be other successful runs in A′ mapped by the projection π to
x, we conclude (∗):

(‖A‖, x) =
∑

1≤i≤s

weight
(
ci

)
=

∑

π(x′)=x

(‖A′‖, x′) = (π(‖A′‖), x).
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Corollary 4.10. Krec〈〈Σ++〉〉 ⊆ KPrat〈〈Σ++〉〉.
Proof. Immediate by Propositions 4.8 and 4.9.

As a consequence of Theorem 4.4 and Corollary 4.10, we obtain:

Theorem 4.11. Let K be a commutative semiring and Σ an alphabet. Then

Krec〈〈Σ++〉〉 = KPrat〈〈Σ++〉〉.

As in the case of picture languages ([9]), for the definition of the class of
rational (resp. recognizable) picture series, the operations and projections used
are necessary. For instance, defining L = {x ∈ {a}++ | l1(x) = l2(x)}, using the
relationship between languages and characteristic series over B, the series 1L

clearly is recognizable over B, but not in Brat〈〈Σ++〉〉.

5 Tile-local and hv-local Series

Local sets play an important role in the theory of recognizable string languages.
Several authors generalized this notion to picture languages [9, 13]. In this sec-
tion, we will assign weights to these local and hv-local picture devices using tiles
or dominoes [13]. This yields, via a projection, to a very simple local definition
and characterization of recognizable picture series.

For a picture p ∈ Σ++, we denote by p̂ the picture that results from p by
surrounding it with the (new) boundary symbol #. If p has size (m, n) then p̂
has size (m + 2, n + 2). Tiles are pictures with size (2, 2), dominoes have size
(1, 2) or (2, 1). For an alphabet Σ and a picture p ∈ Σm×n, we will consider
sub-tiles (sub-dominoes) at certain positions of p̂. For tiles, we define

∀1 ≤ i ≤ m + 1 ∀1 ≤ j ≤ n + 1 : t(p̂i,j) := p̂i,j p̂i,j+1
p̂i+1,j p̂i+1,j+1

.

Also, we consider the sub-dominoes in horizontal or vertical direction distin-
guished by its positions in p̂:

∀1 ≤ i ≤ m + 2 ∀1 ≤ j ≤ n + 1 : dh(p̂i,j) := p̂i,j p̂i,j+1

∀1 ≤ i ≤ m + 1 ∀1 ≤ j ≤ n + 2 : dv(p̂i,j) := p̂i,j

p̂i+1,j
.

We give the following definitions.

Definition 5.1. We call T = (Σ, T ), where T : (Σ∪{#})2×2 → K is a function
mapping tiles over Σ to K a (weighted) tile-system. It computes the picture series
‖T ‖ : Σ++ → K, defined by

∀p ∈ Σ++ : ‖T ‖(p) :=
∏

1≤i≤l1(p)+1
1≤j≤l2(p)+1

T
(
t(p̂i,j)

)
.
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We call S : Σ++ → K tile-local if there exists a tile-system T satisfying
‖T ‖ = S.

Similarly for dominoes we have:

Definition 5.2. A pair D = (Σ, D), where D : (Σ ∪ {#})2×1,1×2 → K maps
dominoes over Σ to K is a (weighted) domino-system. It computes the series
‖D‖ : Σ++ → K, defined by

∀p ∈ Σ++ : ‖D‖(p) :=
∏

1≤i≤l1(p)+2
1≤j≤l2(p)+1

D
(
dh(p̂i,j)

) ·
∏

1≤i≤l1(p)+1
1≤j≤l2(p)+2

D
(
dv(p̂i,j)

)
.

A picture series S : Σ++ → K is called hv-local if there exists a domino-
system D satisfying ‖D‖ = S. We denote the families of tile-local and hv-local
series by Kloc〈〈Σ++〉〉 and Khv〈〈Σ++〉〉, respectively. The functions T (resp. D)
we will call tile (domino)-function. For a picture p, tile-systems (domino-systems)
then compute the product of these functions ranging over the (canonical) tile
(resp. domino)-covering of p̂. As usual, one defines projections of tile-local and
hv-local series. The families of series that are projections of tile-local and hv-local
series we denote by KPloc〈〈Σ++〉〉(KPhv〈〈Σ++〉〉).

We will show that series computed by WPA are presentable as projections
of hv-local series. One has to define a domino-function in such a way that for a
picture p the domino product (running over the canonical domino-covering of p̂)
coincides with the weight of the unique computation (in case it exists) for p in
a rule deterministic automaton.

Proposition 5.3. We have Krec〈〈Σ++〉〉 ⊆ KPhv〈〈Σ++〉〉.
Proof. We restrict ourselves to rule deterministic automata, using a projection
(Proposition 4.9). Let A = (Q,R, Fw, Fs, Fe, Fn) be rule deterministic, comput-
ing ‖A‖ = S. We may use the notations of the proof of Proposition 4.8 and
succeeding Definition 3.2. For a, b ∈ Σ, in case the occurring rules exist, we
define a domino-function D : (Σ ∪ {#})2×1,1×2 → K as follows:

# # 7→ 1 #
a 7→ 1, if σn(r(a)) ∈ Fn

# a 7→ weight(r(a)), if σw(r(a)) ∈ Fw
a
# 7→ 1, if σs(r(a)) ∈ Fs

a # 7→ 1, if σe(r(a)) ∈ Fe
a
b 7→ 1, if σs(r(a)) = σn(r(b))

a b 7→ weight(r(b)), if σe(r(a)) = σw(r(b)) #
# 7→ 1.

D maps all other dominoes to 0. Then D := (Σ, D) is a domino-system. For a
picture p with (unique) successful computation c ∈ R++ in A, the product of
values of D (running over the canonical domino-covering of p̂) coincides with
weight(c). On the other hand, if p has no successful computation in A then,
clearly the definition of D gives ‖D‖(p) = 0. Thus ‖D‖ = S.
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Every hv-local language is local [9, 13]. The analogous result for picture series
provides the following proposition. In the proof here we have to define the tile-
function using the weights of the given domino-function such that respective
products of the canonical coverings for a picture coincide.

Proposition 5.4. Every hv-local series is tile-local.

Proof. Let S : Γ++ → K be hv-local, computed by D = (Γ, D). Define T =
(Γ, T ) as a tile-system computing S such that T = Tulc ∪ Tue ∪ Tle ∪ Tm :
(Γ∪{#})2×2 → K denotes the tile-function (where ulc, ue, le, m stand for “upper
left corner”, “upper edge”, “left edge”, “middle”, respectively). For a ∈ Γ and
b, c, d ∈ Γ ∪ {#}, we put

– Tulc

(
# #
# a

)
= D

(
# #

)
·D

(
# a

)
·D

(
#
#

)
·D

(
#
a

)

– Tue

(
# #
a b

)
= D

(
# #

)
·D

(
a b

)
·D

(
#
b

)

– Tle

(
# a
# b

)
= D

(
#
#

)
·D

(
# b

)
·D

(
a
b

)

– Tm

(
a b
c d

)
= D

(
c d

)
·D

(
b
d

)

The values of D over a domino covering of a picture are distributed with T
over the tile covering. For p ∈ Γ++ we get ‖T ‖(p) = ‖D‖(p) = (S, p).

In fact, to finish our argument for an equivalence theorem, projections of
these tile-local series are recognizable. Since the image of a picture is composed
by the weights of the contained tiles, the idea is to encode the tiles into the
states of the rules similar to a construction in [9]. But the authors considered
2-dimensional online-tesselation automata [13]. Here we derive a WPA that sim-
ulates the constructed underlying online-tesselation automaton by defining rules
that identify their southern and eastern poles. Also, since we now have weights
we have to construct an unambiguous automaton in order not to add outputs
over several runs reading identical pictures.

Proposition 5.5. KPloc〈〈Σ++〉〉 ⊆ Krec〈〈Σ++〉〉.

Proof. It suffices to prove the result for a tile-local series (Lemma 4.3). Let
S : Σ++ → K be a tile local series, computed by a given tile-system T = (Σ, T )
with tile-function T : (Σ ∪ {#})2×2 → K. We define A = (Q,R, Fw, Fs, Fe, Fn)
as a WPA over Σ computing S by putting Q = (Σ ∪ {#})2×2 and

– Fw =
{

# a
# b | a ∈ Γ, b ∈ Γ ∪ {#}

}
, Fs =

{
a b
# # | a ∈ Γ, b ∈ Γ ∪ {#}

}

– Fe =
{

a #
b # | a ∈ Γ, b ∈ Γ ∪ {#}

}
, Fn =

{
# #
a b | a ∈ Γ, b ∈ Γ ∪ {#}

}
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– R = Rulc ∪ Rue ∪ Rle ∪ Rm ⊆ Γ × K × Q4 (where ulc, ue, le, m stand for
“upper left corner”, “upper edge”, “left edge”, “middle”, respectively) with
(a, b, c, d, f, g, h, x, y, t, z ∈ Γ ∪ {#}):

– Rulc =
{

e =
(

a,w(e), # a
# c , a b

c d , a b
c d , # #

a b

)
| a ∈ Γ

}

and w(e) = T
(

# #
# a

) · T (
# #
a b

) · T (
# a
# c

) · T (
a b
c d

)

– Rue =
{

e =
(

b, w(e), a b
h d , b c

d f , b c
d f , # #

b c

)
| a, b ∈ Γ

}

and w(e) = T
(

# #
b c

) · T (
b c
d f

)

– Rle =
{

e =
(

c, w(e), # c
# g , c d

g h , c d
g h , a b

c d

)
| a, c ∈ Γ

}

and w(e) = T
(

# c
# g

) · T (
c d
g h

)

– Rm =
{

e =
(

a,w(e), z a
t c , a b

c d , a b
c d , x y

a b

)
| a, x, z ∈ Γ

}

and w(e) = T
(

a b
c d

)
.

To prove ‖A‖ = S, we observe the following. Given a picture p ∈ Γ++ with
successful computation c ∈ R++ in A, for weight(c), every tile of the canonical
covering of p̂ occurs exactly once in the multiplication. On the other hand, the
tiles of an arbitrary picture p are encoded in Q. The given construction with its
accepting condition defines an unambiguous weighted picture automaton which
has a unique successful run for every element in Γ++. Hence for p ∈ Γ++ we
have

‖A‖(p) =
∏

1≤i≤l1(p)+1
1≤j≤l2(p)+1

T (t(p̂i,j)) = ‖T ‖(p) = (S, p).

Now, we can prove a result originally stated by S. Bozapalidis (private com-
munication):

Corollary 5.6. Krec〈〈Σ++〉〉 = KPhv〈〈Σ++〉〉 = KPloc〈〈Σ++〉〉.
Proof. Immediate by Propositions 5.3, 5.4 and 5.5

There is also a direct proof for the inclusion from the first to the third class. We
include the construction, since it is easy to follow and gives the reader a deeper
insight into weighted picture devices. The idea goes as follows. As in some of the
other proofs we can restrict ourselves to rule-deterministic automata. Then we
have to define a tile-function such that the tile-product in K (running over all
pieces of the canonical covering of a picture p) coincides with the weight of the
unique computation for p in the automaton.

Lemma 5.7. Let S ∈ Krec〈〈Σ++〉〉. Then S is the projection of a tile local
series.
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Proof. Let A = (Q, R, Fw, Fs, Fe, Fn) be a picture automaton for S (it suffices
to assume A as rule deterministic since by Corollary 5.6, KPloc〈〈Σ++〉〉 is closed
under projections). We use the notations of the proof of Proposition 4.8 and
succeeding Definition 3.2. Let a, b, c, d ∈ Σ. If the occurring rules exist, we define
T : (Σ ∪ {#})2×2 → K as follows:

# #
# a 7→ weight(r(a)), if σw(r(a)) ∈ Fw, σn(r(a)) ∈ Fn

# #
a # 7→ 1, if σe(r(a)) ∈ Fe, σn(r(a)) ∈ Fn

# a
# # 7→ 1, if σw(r(a)) ∈ Fw, σs(r(a)) ∈ Fs

a #
# # 7→ 1, if σe(r(a)) ∈ Fe, σs(r(a)) ∈ Fs

# #
a b

7→ weight(r(b)), if σn(r(a)) ∈ Fn, σn(r(b)) ∈ Fn, σe(r(a)) = σw(r(b))

a b
# # 7→ 1, if σs(r(a)) ∈ Fs, σs(r(b)) ∈ Fs, σe(r(a)) = σw(r(b))

# a
# b 7→ weight(r(b)), if σw(r(a)) ∈ Fw, σw(r(b)) ∈ Fw, σs(r(a)) = σn(r(b))

a #
b # 7→ 1, if σe(r(a)) ∈ Fe, σe(r(b)) ∈ Fe, σs(r(a)) = σn(r(b))

a b
c d 7→ weight(r(d)), if σe(r(a)) = σw(r(b)), σe(r(c)) = σw(r(d)),

σs(r(a)) = σn(r(c)), σs(r(b)) = σn(r(d)).

All other tiles are mapped to 0. The composed weights of successful computation
in A are assigned to T in a unique way such the products coincide. For pictures
p with no successful computation in A, T maps one subtile of p to 0. It follows
‖(Σ, T )‖ = S.

6 Comparing all Families

We introduced different devices to characterize picture series. The theorem below
shows that the definition of a recognizable picture series is very robust. The proof
immediately follows from Theorem 4.11 and Corollary 5.6.
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Theorem 6.1. Let Σ be an alphabet and S a picture series over Σ. The follow-
ing assertions are equivalent.

1. S is the behaviour of a weighted picture automaton.
2. S is the projection of a rational series.
3. S is the projection of a tile-local series.
4. S is the projection of an hv-local series.
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