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Abstract. t-contextual grammars with regular selection are considered
for which all t insertions are performed in the same neighbourhood. The
languages generated by these grammars are accepted by restarting auto-
mata with cut-index t. Here the classes of languages accepted by certain
variants of restarting automata with limited cut-index are studied.

1 Introduction

The motivation for Marcus contextual grammars [8] as well as for restarting
automata [2, 15] comes mainly from linguistics. A Marcus contextual grammar
is a generative device that describes a language through the process of inserting
contexts into strings, and that works completely without nonterminals. Which
strings are inserted at which places is controlled by the so-called selection map-
ping, which can be very general. Accordingly, different restrictions on this mech-
anism have been considered (see, e.g., [13]). A particular type of restriction are
the contextual grammars with regular selection [10], in which the selection func-
tions are described by means of regular languages.

A restarting automaton, on the other hand, is a model of an analytical device.
It has a finite-state control and a scanning window of a fixed size that works
on a flexible tape delimited by sentinels. Such an automaton works in cycles.
In each cycle it starts in its initial state with the scanning window in the left-
most position. It can move the scanning window on the tape one cell at a time
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by performing move-right and move-left steps until, at some place, it decides
(nondeterministically) to rewrite the part of the tape content in its window by
a shorter string. After that it may perform some more move-right and move-left
steps, until eventually the automaton restarts, that is, it reenters its initial state
and places its window into the leftmost position. Then the next cycle starts on
the now shortened tape. The automaton halts by either performing an accept
operation, or by entering a configuration for which its control unit has no further
instructions, in which case it rejects. Restarting automata which are restricted
in their rewrite operations to only delete some symbols from the content of the
window (called RL-automata) can be used as recognizers for languages that are
generated by certain contextual grammars with regular selection [7, 10].

In some respect, however, RL-automata are more general than contextual
grammars with regular selection, as in each cycle such an automaton can delete
more than two subwords simultaneously. This corresponds to the notion of t-
contextual grammar with regular selection, which is a contextual grammar with
regular selection that inserts t (t ≥ 1) subwords in each derivation step [13]. It is
known that the expessive power of these grammars increases with the number t.
Here we study this phenomenon in combination with the additional restriction
that the places of insertion are close to each other, that is, the size of the part
of the string that is changed in one derivation step by inserting t subwords is
bounded by a constant. This restriction is also quite natural from a linguistic
point of view.

It is easily seen that a language which is generated by a t-contextual grammar
G that is restricted in this way can be recognized by an RL-automaton M which
can delete at most t factors of the content of its window in each cycle. We say that
such an RL-automaton has cut-index t. Each derivation step of G corresponds to
one cycle of M , and the base set of words of G corresponds to the set of words
that are accepted by M without a restart. Hence, we can even require that M is
in weak cyclic form (see [1]), which means that M can accept without a restart
only words of length not exceeding the size of M ’s scanning window. On the
other hand, for each RL-automaton M in weak cyclic form with cut-index t, a
restricted t-contextual grammar can be constructed that generates the language
accepted by M . In this way the classification of classes of RL-automata in weak
cyclic form with respect to the cut-index induces a classification of the generative
power of those t-contextual grammars that are restricted in the aforementioned
way.

For various subclasses of RL-automata we study the influence of the cut-index
on their expressive power. In particular, we consider deterministic and nondeter-
ministic variants, one-way variants, called RR-automata, and one-way variants
that restart immediately after performing a rewrite step, called R-automata. Ob-
serve that the latter perform a rewrite in combination with a restart without
being able to see the tape content to the right of the position where the rewrite
operation is performed. It turns out that already R-automata with cut-index 1
are quite expressive, as they can recognize some NP-complete languages. Hence,
we consider further restrictions – right- and left-monotone variants of restarting
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automata. This enables us to relate the corresponding language classes to the
lower classes of the Chomsky hierarchy.

We will use the following notation. The empty word is denoted by λ, ⊆
denotes the subset relation, and ⊂ denotes the proper subset relation. N and N+

denote the sets of non-negative and of positive integers, respectively. FIN, REG,
LIN, CFL, DCFL denote the classes of finite, regular, linear, context-free, and
deterministic context-free languages, respectively, and DLIN denotes the class of
deterministic linear languages, which is the class of languages that are accepted
by deterministic one-turn pushdown automata. Further, for any set S, we will
denote the power set of S by 2S , and for any class A of grammars, L(A) will
denote the class of languages that are generated by grammars from A.

This paper is an extended abstract, not containing full proofs for the results
presented. They can be found in [5].

2 Contextual grammars

The t-contextual grammars, where t is a positive integer, are generalizations of
Marcus contextual grammars [13]. In order to obtain selection mappings that
are efficiently decidable we consider a restricted variant only.

Definition 1 Let t be a positive integer. A t-contextual grammar with regular
selection is a (t + 5)-tuple G = (V, B, C,L1, . . . ,Lt+1, f), where V is a finite
alphabet, B is a finite language over V , C is a finite subset of (V ∗)t, L1, . . . ,
Lt+1 are finite sets of regular languages over V , and f : L1×L2×. . .×Lt+1 → 2C

is the (regular) t-selection mapping.
By x ⇒G y we denote the derivation of y from x in G, that is, x ⇒G y holds

if there exist languages P1 ∈ L1, P2 ∈ L2, . . . , Pt+1 ∈ Lt+1 and words x1 ∈ P1,
x2 ∈ P2, . . . , xt+1 ∈ Pt+1 such that

x = x1x2x3 . . . xtxt+1 and y = x1u1x2u2x3 . . . xtutxt+1

for some context (u1, . . . , ut) ∈ f(P1, . . . , Pt+1). The language generated by G
is the set L(G) = { v | ∃u ∈ B : u ⇒∗

G v }, and RS(G) = (V ∗,⇒−1
G ) is the

reduction system induced by G, where u ⇒−1
G v if and only if v ⇒G u.

It is easily verified that this definition is equivalent to the definition of t-
contextual grammars with selection of type REG of [13]. Thus, the expressive
power of t-contextual grammars with regular selection stricly increases with the
value of the parameter t.

We use the notation t-CGR to denote the class of all t-contextual grammars
with regular selection. Apparently, 2-CGR coincides with the class of contex-
tual grammars with regular selection from [10]. Restrictions that are imposed
on the sets of strings describing the places of insertion will be put in paren-
theses after t-CGR. We will in particular be interested in the class CGRfin[t] :=
t-CGR(REG, FIN, . . . , FIN, REG), which denotes the class of t-contextual gram-
mars of the form G = (V, B, C,L1, . . . ,Lt+1, f), where L1 and Lt+1 are finite
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sets of regular languages, and L2, . . . ,Lt are finite sets of finite languages. Thus,
for a grammar of this form all t insertions are performed close to each other in
each derivation step.

3 Two-way restarting automata

Here we describe in short the type of restarting automaton we will be dealing
with. Details can be found in [11].

A two-way restarting automaton without rewriting , RL-automaton for short,
is a nondeterministic machine M with a finite-state control Q, a finite input
alphabet Σ, a flexible tape, and a read/write window of a fixed size k ≥ 1. The
work space is limited by the left sentinel c and the right sentinel $, which cannot
be removed from the tape. The behaviour of M is described by a transition
relation δ that associates to a pair (q, u) consisting of a state q and a possible
content u of the read/write window a finite set of possible transition steps. There
are five types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A move-left step (MVL) causes M to shift the read/write window one position
to the left and to change the state. However, the window cannot move across
the left sentinel c.

3. A rewrite step causes M to replace the content u of the read/write window
by a proper scattered subword v of u, thereby shortening the tape, and to
change the state. Further, the read/write window is placed immediately to
the right of the string v.

4. A restart step causes M to place its read/write window over the left end of
the tape, and to reenter the initial state q0.

5. An accept step causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that
M rejects in this situation. In addition, it is required that in each computation
of M rewrite steps and restart steps alternate with a rewrite step coming first.

A configuration of M is a string αqβ where q ∈ Q, and either α = λ and
β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that
the head scans the first k symbols of β or all of β when |β| ≤ k. A restarting
configuration is of the form q0cw$, where w ∈ Σ∗. Thus, each computation
of M can be described by a sequence of cycles, where a cycle begins with a
restarting configuration and ends with the next restarting configuration. The
part of the computation after the last restart operation is called the tail of the
computation. We use the notation u `c

M v to denote a cycle of M that begins with
the restarting configuration q0cu$ and ends with the restarting configuration
q0cv$; the relation `c∗

M is the reflexive and transitive closure of `c
M . The pair

RS(M) = (Γ ∗,`c
M ) is the reduction system induced by M .
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An input w ∈ Σ∗ is accepted by M , if there is a computation which, starting
with the initial configuration q0cw$, finishes by executing an accept instruction.
By L(M) we denote the language consisting of all words accepted by M ; we say
that M recognizes (accepts) the language L(M).

In general, the automaton M is nondeterministic, that is, there can be two
or more instructions with the same left-hand side (q, u). If this is not the case,
the automaton is deterministic.

Now we define those subclasses of RL-automata that are relevant for our in-
vestigation. An RR-automaton is an RL-automaton which does not use any MVL
instructions, and an R-automaton is an RR-automaton which restarts immedi-
ately after rewriting, that is, for such an automaton each rewrite transition is
immediately followed by a restart transition. By det-RL we denote the class of
deterministic RL-automata, and analogously for the other types of restarting au-
tomata. Further, for each type X of automata, we denote the class of languages
that are accepted by automata from that class by L(X).

Next we turn to the various notions of monotonicity for restarting auto-
mata [2, 3, 16, 17]. Each cycle C of a computation of a restarting automaton
contains a unique configuration αqβ in which a rewrite instruction is applied.
The number |β| is called the right distance of C, denoted by Dr(C), and |α| is
the left distance of C, denoted by Dl(C).

We say that a sequence of cycles S = (C1, C2, · · · , Cn) is right-monotone if
Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn), and that it is left-monotone if Dl(C1) ≥
Dl(C2) ≥ . . . ≥ Dl(Cn). A computation is right-monotone or left-monotone,
respectively, if the corresponding sequence of cycles is right-monotone or left-
monotone. Further, a computation is right-left-monotone, if it is simultaneously
right-monotone and left-monotone. Observe that the tail of the computation
does not play any role here. Finally, a restarting automaton M is called right-
monotone, left-monotone or right-left-monotone, respectively, if all its compu-
tations that begin with an initial configuration are right-, left-, or right-left-
monotone, respectively. Right-monotone restarting automata were introduced
in [2] as monotone restarting automata. The prefixes mon-, left-mon-, and right-
left-mon- are used to indicate the various classes of monotone, left-monotone and
right-left-monotone restarting automata, respectively.

4 Cut-index and t-contextual grammars

Each application of the rewrite relation ⇒−1
G corresponding to a t-contextual

grammar G removes (at most) t factors from the current word, hence we relate
them to RL-automata which can delete at most t factors in a rewrite step. We
say that a rewrite step

x1y1x2y2x3 . . . xtytxt+1 → x1x2x3 . . . xtxt+1

has t ‘cuts,’ if the factors xi are non-empty for all 2 ≤ i ≤ t, and the factors yj

are non-empty for all 1 ≤ j ≤ t. We say that an RL-automaton has cut-index t,
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if all its rewrite instructions have at most t cuts. For a class of automata X, we
denote by cut(t)-X the set of all automata from X with cut-index t.

Naturally, each language that is recognized by some R-, RR-, or RL-automaton
has a finite cut-index. In particular, the cut(2)-RL-automaton is just the normal
RL-automaton introduced in [7] as a generalization of the normal R-automaton
from [1]. Hence, the cut-index can be seen as a generalization of the notion of
normality.

Further, a restarting automaton M with a read/write window of size k is said
to be in weak cyclic form if M immediately (that is, without a restart) accepts
or rejects any word of length less than or equal to k, and M performs at least
one restart step or rejects for any word of length exceeding k. The property of
being in weak cyclic form will be denoted by the prefix wcf-.

The following result generalizes a result for CGRfin[2] established in [7].

Lemma 2 For each G ∈ CGRfin[t], a wcf-cut(t)-RL-automaton M can be con-
structed such that L(M) = L(G) and RS(M) = RS(G).

The converse transformation of cut(t)-RL-automata in weak cyclic form to
t-CGRs is also possible (it is a minor generalization of the corresponding state-
ment for CGRfin[2] given in [7]).

Lemma 3 For each wcf-cut(t)-RL-automaton M , a t-contextual grammar G ∈
CGRfin[t] can be constructed such that L(G) = L(M) and RS(G) = RS(M).

For some types of restarting automata it is possible to transform a given
automaton of that type into another automaton of the same type that is in weak
cyclic form. For example, each monotone RR-automaton can be transformed into
an equivalent monotone RR-automaton that is in weak cyclic form [9], while it
is shown in [14] that monotone R-automata in weak cyclic form are strictly less
expressive than monotone R-automata that are not in weak cyclic form.

Remark 4 In what follows we will establish various hierarchy results for restart-
ing automata. All these results will be formulated in terms of restarting automata
in weak cyclic form, but they all carry over to the case of restarting automata
that are not in weak cyclic form.

For each RL-automaton M , a (nondeterministic) RR-automaton M ′ can be
constructed such that, for all words u, v, u `c

M v if and only if u `c
M ′ v, and

the right distance (as well as the left distance) is the same in both cycles [16].
Hence, in the nondeterministic case, RL- and RR-automata are equivalent. In
particular, this yields the following consequence, where ε is used to denote the
empty prefix.

Theorem 5 For each t ≥ 1 and each Y ∈ {ε, mon-, left-mon-, right-left-mon-},

L(wcf-Y-cut(t)-RL) = L(wcf-Y-cut(t)-RR).
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Nevertheless, we can show that by increasing the value of the cut-index we
increase the expressive power of deterministic as well as nondeterministic RL-,
RR- and R-automata. In order to establish these hierarchies we will construct a
sequence of sample languages that will be based on the following language

L := {xi0yi1xi2yi3 . . . yim | x, y ∈ {a, b}, x 6= y,m > 0, i0, . . . , im−1 > 0, im ≥ 0,
∃p ≥ 0 : 2p = i0 + 2 · i1 + 4 · i2 + . . . + 2m · im }.

For each t ≥ 1, let ϕt : {a, b}∗ → {0, 1}∗ be the morphism defined by

ϕt(a) := (001)t and ϕt(b) := (01)t,

and let Lt denote the language Lt := ϕt(L).

Theorem 6 For each t > 1, Lt ∈ L(wcf-det-cut(t)-R)r L(cut(t− 1)-RL).

First we establish the following result, where an RW-automaton is an R-
automaton with rewriting, that is, its rewrite instructions are of the more general
form u → v, where v is any string from Σ∗ satisfying |v| < |u|.

Lemma 7 The language L is accepted by a deterministic RW-automaton M
that is in weak cyclic form and that has a read/write window of size 3.

Proof. Let M = (Q, {a, b}, {a, b}, c, $, q0, 3, δ) be the RW-automaton that is
given by the following description:

– M immediately accepts the words a and b.
– For a word w of length at least 2, let x ∈ {a, b} be the first symbol of w and

let y ∈ {a, b}, y 6= x. If w does not start with xx, then M rejects, otherwise
M moves to the right until the rightmost symbol in its read/write window
is different from x. Now, if the content of the read/write window is
• xx$, then M rewrites it into y$ and restarts,
• xxy, then M rewrites it into yy and restarts.

Obviously, M is deterministic and in weak cyclic form. It remains to show
that L(M) = L.

Let w = xi0yi1xi2yi3 . . . yim such that x, y ∈ {a, b}, x 6= y, m > 0, im ≥ 0
and i0, . . . , im−1 > 0. If w ∈ L, then there exists an integer p ≥ 0 such that
2p = i0 +

∑m
j=1 2j · ij . If p = 0, then i0 = 1, m = 1, and i1 = 0, that is,

w = x ∈ {a, b}. Hence, w is immediately accepted by M .
If p > 0, then i0 > 0 is even, and by performing i0

2 cycles, M will rewrite w
into the word

w′ = y
i0
2 +i1xi2yi3 . . . yim = yi′0xi′1yi′2 . . . yi′m−1 ,

where
m−1∑

j=0

2j · i′j = (
i0
2

+ i1) +
m−1∑

j=1

2j · ij+1 = 2p−1.
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Hence, after a finite number of cycles, M obtains a word w′′ of the form w′′ = x2r

or w′′ = y2r

for some r ≥ 0. If r > 0, then x2r `c∗
M y2r−1

and y2r `c∗
M x2r−1

. Thus,
after a finite number of cycles M obtains the tape content a or b and accepts.

On the other hand, let w be a word that is accepted by M in a sequence of
n ≥ 0 cycles

w = w0 `c
M w1 `c

M . . . `c
M wn,

where w0, . . . , wn ∈ {a, b}∗, which is followed by an accepting tail computation.
As a, b are the only words accepted by M in tail computations, wn ∈ {a, b}. By
induction on the number n of cycles it can be shown that the following property
holds:

∃x, y ∈ {a, b} ∃m > 0∃p ≥ 0∃i0, i1, . . . , im−1 > 0∃im ≥ 0 : ( ∗ )

w = xi0yi1xi2yi3 . . . yim and 2p =
∑m

j=0 2j · ij .

This completes the proof that L(M) = L. 2

Proof of Theorem 6. Based on M and ϕt, a deterministic R-automaton Mt for
the language Lt can be constructed. The rewrite instructions of Mt correspond
to the rewrite instructions of M , which actually rewrite aa into b and bb into a.
In order to rewrite ϕt(aa) = (001)2t into ϕt(b) = (01)t, we can delete the prefix
(001)t0 and delete one occurrence of the symbol 0 from each of the remaining
t − 1 factors 001. Similarly, to rewrite ϕt(bb) = (01)2t into ϕt(a) = (001)t, we
can delete every odd-numbered occurrence of the symbol 1 from (01)t. Hence, it
is easily seen that Mt has cut-index t. Further, with M also Mt is in weak cyclic
form.

It remains to prove that Lt is not accepted by any RL-automaton with cut-
index t− 1.

Assume that Lt is accepted by some RL-automaton M ′
t with a read/write

window of size k′. Then, for a sufficiently large integer n > k′, the word w :=
ϕt(a2n

) = (001)2
n·t ∈ Lt is not accepted by M ′

t in a tail computation, as oth-
erwise, using pumping techniques, we can easily construct a word outside Lt

which is also accepted by M ′
t . Thus, each accepting computation of M ′

t on in-
put w starts with a cycle w `c

M ′
t

w′ for some word w′ ∈ Lt. As any word in
Lt ∩ ϕt(a+) that is shorter than the word ϕt(a2n

) is of length at most

|ϕt(a2n−1
)| = |ϕt(a2n

)| − 2n−1 · 3t < |ϕt(a2n

)| − k′,

the word w′ must contain at least one factor of the form ϕt(b). The first such
factor of w′ is either preceded by c , if it is a prefix of w′, or it is preceded by
a factor of the form ϕt(a) = (001)t that ends with the symbol 1. Hence, cw′$
either contains the factor c(01)t or the factor 1(01)t. In either case this factor
cannot be obtained from c(001)2

n·t$ by deleting less than t subwords. Hence, M ′
t

must have cut-index larger than or equal to t, which completes the proof. 2

As an immediate consequence we obtain the following hierarchies.
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Corollary 8 For each t ≥ 1 and each X ∈ {R,RR,RL},
(a) L(wcf-det-cut(t)-X) ⊂ L(wcf-det-cut(t + 1)-X),
(b) L(wcf-cut(t)-X) ⊂ L(wcf-cut(t + 1)-X).

5 On the power of cut(1)-R-automata

The language L1 = ϕ1(L) defined above is not context-free, in fact, it is not even
semi-linear, as L1 ∩ (001)∗ = { (001)n | ∃p ≥ 0 : n = 2p }, but it is accepted by a
wcf-det-cut(1)-R-automaton, implying the following result.

Theorem 9 L(wcf-det-cut(1)-R) contains a language which is not semi-linear.

Syntactically nondeterministic cut(1)-R-automata are very restricted, but
surprisingly they are still quite expressive. We demonstrate this by showing that
cut(1)-R-automata can even recognize NP-complete languages.

Theorem 10 L(wcf-cut(1)-R) contains NP-complete languages.

Proof. In [4] a log-space reduction is presented that, for any NP-complete lan-
guage L, yields an NP-complete language L1 which is accepted by a shrinking
RWW-automaton M . A shrinking RWW-automaton is a generalization of an
RWW-automaton that uses rewrite steps that are weight-reducing with respect
to some weight function instead of being required to be length-reducing (see [4]
for details). Our result is obtained by modifying this construction in two steps.

First M is transformed into a shrinking RWW-automaton M ′ such that
L(M ′) = L(M) and all rewrite instructions of M ′ replace a nonempty subword
by a single symbol or by the empty word. Then a morphism ϑ is introduced such
that ϑ(L(M ′)) is still an NP-complete language, and there exists an R-automaton
M ′′ such that L(M ′′) ∩ ϑ(Σ∗) = ϑ(L(M ′)), which implies that L(M ′′) is NP-
complete, too. Because of the restricted form of the rewrite instructions of M ′,
M ′′ has cut-index 1. 2

6 Cut hierarchies for monotone automata

As seen in the previous section, already cut(1)-R-automata are quite powerful.
Hence, it is worth to also study some other restricted variants of restarting
automata. Here we concentrate on the various monotone versions, which enables
us to relate the language classes obtained to the Chomsky hierarchy.

All the relations shown in this and the previous sections are summarized in

Fig. 1–4. In these figures, an arrow A
j //B between two types of restarting

automata A and B means that the proper inclusion relation L(A) ⊂ L(B), and
also L(wcf-A) ⊂ L(wcf-B) (see Remark 4), is shown in statement j. Similarly,

A
j

B states that the equality L(A) = L(B), and also L(wcf-A) = L(wcf-B),
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Fig. 1. Hierarchies for deterministic (left diagram) and nondeterministic (right dia-
gram) right-left-monotone restarting automata.
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Fig. 2. Hierarchies for deterministic (left diagram) and nondeterministic (right dia-
gram) (right-) monotone restarting automata.

is shown in statement j. Hence, each figure represents two diagrams, where the
second one is obtained by adding the prefix wcf- to all the classes of restarting
automata depicted.

Each regular language is accepted by some R-automaton without rewriting
(deleting). On the other hand, the non-regular language { anbn | n ≥ 0 } is recog-
nized by a deterministic wcf-right-left-monotone R-automaton with cut-index 1,
implying the following proper inclusion.

Theorem 11 REG ⊂ L(wcf-det-right-left-mon-cut(1)-R).

On the other hand, Theorem 5 and the results of [3, 17] yield the following.

Theorem 12 For each t ≥ 1 the following proper inclusions hold:

(a) L(mon-cut(t)-RL) ⊂ CFL,

(b) L(left-mon-cut(t)-RL) ⊂ CFL,

(c) L(right-left-mon-cut(t)-RL) ⊂ LIN.

For deterministic (right-) monotone R- and RR-automata it follows from re-
sults of [1, 3] that the cut-hierarchies collapse at level 2 into DCFL.

Theorem 13 For each t ≥ 2, L(wcf-det-mon-cut(t)-R(R)) = DCFL.
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Fig. 3. Hierarchies for deterministic (left diagram) and nondeterministic (right dia-
gram) left-monotone restarting automata.
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Fig. 4. Hierarchies for deterministic (left diagram) and nondeterministic (right dia-
gram) restarting automata.

A similar collapse occurs for deterministic right-left-monotone R- and RR-
automata, this time into the class DLIN of deterministic linear languages.

Theorem 14 For each t ≥ 2, L(wcf-det-right-left-mon-cut(t)-R(R)) = DLIN.

Deterministic RL-automata are more powerful than deterministic RR-auto-
mata. This remains true even when we consider automata with restricted cut-
index, as the language { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 } is accepted by
a wcf-det-right-left-mon-cut(1)-RL-automaton, but it cannot be accepted by any
det-RR-automaton. This result yields the following proper inclusions.

Corollary 15 For each t ≥ 1 and each Y ∈ {ε, mon-, left-mon-, right-left-mon-},

L(wcf-det-Y-cut(t)-RR) ⊂ L(wcf-det-Y-cut(t)-RL).

On the other hand, a statement similar to Theorem 13 also holds for any
monotone type of deterministic RL-automaton.

Theorem 16 For each t ≥ 2 and each Y ∈ {mon-, left-mon-, right-left-mon-},

L(wcf-det-Y-cut(t)-RL) = L(wcf-det-Y-cut(2)-RL).
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Proof. The first part was proved in [7] in the form

L(det-right-left-mon-RL) = L(det-cut(2)-right-left-mon-RL).

Again, the det-cut(2)-right-left-mon-RL-automaton constructed for a given deter-
ministic right-left-RL-automaton is in weak cyclic form.

The second statement follows from the following observation. In [6] it is
shown that, for each det-left-mon-RLWW-automaton M , there exists a determin-
istic generalized sequential machine G such that G(L)R ∈ DCFL. Here we use
the notation wR to denote the mirror image of a word w, which is extended
to languages L and language classes L by taking LR := {wR | w ∈ L } and
LR := {LR | L ∈ L}, respectively. Hence, the language G(L)R is accepted
by a deterministic monotone R-automaton M1 with cut-index 2 (Theorem 13).
Further, it is shown in [6] that the language L(M) is accepted by a determinis-
tic RL-automaton of a very special form. In each cycle this RL-automaton first
scans its tape from left to right (without performing a rewrite step), and then it
scans it again from right to left using M1 to identify the place and the form of
the actual rewrite transition to be applied. Thus, the resulting automaton is a
deterministic RL-automaton which is left-monotone and which has cut-index 2.
Also it is in weak cyclic form.

The third equality follows from the fact that

L(det-mon-RL) = L(det-left-mon-RL)R

([6] Lemma 1), and the observation that this equality remains valid for all levels
of the cut-hierarchy and also for automata in weak cyclic form. 2

In contrast to the above results the cut-hierarchy does not collapse for any
monotone type of nondeterministic R-, RR-, or RL-automaton. This is based on
the fact that, for each t ≥ 2, a properly encoded version of the language

{ anbn, ancbn | n ≥ 0 } ∪ { ambn, amdbn | m > 2n ≥ 0 }

is accepted by a wcf-right-left-mon-cut(t)-R-automaton, but it cannot be accepted
by any cut(t− 1)-RL-automaton. As a consequence we obtain the following hi-
erarchy results.

Corollary 17 For each t ≥ 1, each Y ∈ {mon-, left-mon-, right-left-mon-}, and
each X ∈ {R, RR, RL}, L(wcf-Y-cut(t)-X) ⊂ L(wcf-Y-cut(t + 1)-X).

Next we separate the cut-hierarchies for nondeterministic RR-automata from
those for nondeterministic R-automata. This is based on the observation that
the language { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 } cannot be accepted by any
R-automaton.

Corollary 18 For each t ≥ 1 and each Y ∈ {ε, mon-, left-mon-, right-left-mon-},

L(wcf-Y-cut(t)-R) ⊂ L(wcf-Y-cut(t)-RR).
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With this we have completely determined the relationships with respect to
the cut-index between the various monotone types of nondeterministic R-, RR-,
and RL-automata.

The language { anbm | 0 ≤ n ≤ m ≤ 2n } cannot be accepted by any det-RL-
automaton, but it is accepted by a wcf-right-left-mon-R-automaton with cut-
index 1, which gives the following separation results.

Corollary 19 For each t ≥ 1, each Y ∈ {ε, mon-, left-mon-, right-left-mon-}, and
each X ∈ {R, RR, RL}, L(wcf-det-Y-cut(t)-X) ⊂ L(wcf-Y-cut(t)-X).

The language { ancbn | n ≥ 0 } cannot be accepted by any RL-automaton with
cut-index 1, while it is accepted by some deterministic right-left-mon-cut(2)-R-
automaton. This yields the following results.

Corollary 20 For each Y ∈ {mon-, left-mon-, right-left-mon-} and each X ∈
{R, RR, RL}, L(wcf-det-Y-cut(1)-X) ⊂ L(wcf-det-Y-cut(2)-X).

As { anbicbj | n, i, j ≥ 0, n = i + j } ∪ { anbn | n ≥ 0 } is accepted by a
deterministic wcf-right-left-mon-RR-automaton with cut-index 1, while it cannot
be accepted by any R-automaton with cut-index 1, we obtain the following proper
inclusions.

Corollary 21 For each Y ∈ {ε, mon-, left-mon-, right-left-mon-},
L(wcf-det-Y-cut(1)-R) ⊂ L(wcf-det-Y-cut(1)-RR).

In contrast to the situation for the other types of monotone deterministic
restarting automata, the cut-hierarchies for left-monotone deterministic R- and
RR-automata are infinite, as, for each t ≥ 3, the language

{ am+n(bc)nbmd | m,n ≥ 0 } ∪ { am+n(bc)t·nct·me | m,n ≥ 0 }
is accepted by a wcf-det-left-mon-R-automaton that has cut-index t, while it
cannot be accepted by any det-RR-automaton with cut-index less than t. This
has the following consequences.

Corollary 22 For each t ≥ 2,

L(wcf-det-left-mon-cut(t)-R(R)) ⊂ L(wcf-det-left-mon-cut(t + 1)-R(R)).

Finally, we consider the language L := L1 ∪ L2 ∪ L3 ∪ L4, where

L1 := { am(1010)n(100)i | m = n + i, where m, i > 0, n ≥ 0 },
L2 := { am(1010)n(100)j1(100)i | m = n + j + i, where m, i, j > 0, n ≥ 0 },
L3 := { am(1010)n1(100)j1(100)i | m = n + j + i, where m, i, j > 0, n ≥ 0 },
L4 := { am(1010)n0i | 2m = n + i, where m, i > 0, n ≥ 0 }.

This language is accepted by a wcf-det-left-mon-RR-automaton M with cut-
index 1. However, it cannot be accepted by any R-automaton, which yields the
following separation results.
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Corollary 23 For each t ≥ 1:

(a) L(wcf-det-left-mon-cut(t)-R) ⊂ L(wcf-det-left-mon-cut(t)-RR),
(b) L(wcf-det-cut(t)-R) ⊂ L(wcf-det-cut(t)-RR).

7 Conclusions

We have studied the influence of the cut-index on the expressive power of various
types of restarting automata. Because of the correspondence between restarting
automata in weak cyclic form and t-contextual grammars with regular selection
for which the places of insertion are required to be close to each other, our hier-
archy results translate into corresponding results for these classes of t-contextual
grammars. It is of interest to abstract from the locality restriction, and to study
the correspondence of t-contextual grammars with regular selection to certain
types of restarting automata. In order to obtain such classes of automata, the
restarting automaton must be allowed to perform t cut(1)-deletions at arbitrary
places in each cycle. This line of research has been followed in [12].
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13. G. Păun. Marcus Contextual Grammars, Studies in Linguistics and Philosophy,
vol. 67. Kluwer Academic Publishers, Dordrecht/Boston/London, 1997.
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