
Monotone Operations and Monotone Groups?

Costas Busch1, Marios Mavronicolas2, and Paul Spirakis3

1 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
12180. buschc@cs.rpi.edu

2 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.
Email: mavronic@ucy.ac.cy

3 Department of Computer Engineering and Informatics, University of Patras, 265 00
Patras, Greece, & Research and Academic Computer Technology Institute, 261 10

Patras, Greece. spirakis@cti.gr

Abstract. We survey an algebraic approach to proving impossibility re-
sults in distributed computing. The approach is emerging around mono-
tone groups, a new class of algebraic groups we define here as a tight suit
to monotone Read&Modify&Write (or RMW) operations in a distributed
system. The yields of this approach have been the first impossibility re-
sults for implementations of monotone RMW operations that are based
on switching networks, a class of concurrent, low-contention data struc-
tures in distributed computing.

1 Introduction

1.1 Monotone RMW Operations and Monotone Groups

A Read&Modify&Write shared variable or register, henceforth abbreviated as
RMW, is an abstract variable type that allows reading its old value, comput-
ing via some specific operator a new value as a function of the old value, and
writing the new value back to the register, all in a single, atomic (indivisible)
RMW operation.

In this survey, we focus on a specific class of RMW operations whose associ-
ated operators correspond to a certain class of algebraic groups introduced by
Busch et al. [1], which we call monotone groups. A monotone group has a total
order and a monotone subdomain; the latter enjoys a significant monotonicity
property, which is called Monotonicity under Composition: applying the opera-
tor on an element from the monotone subdomain results to another element in
the monotone subdomain that strictly dominates the initial one with respect to
the total order. The Fetch&Add and Fetch&Multiply operations are popular ex-
amples from the class. A monotone RMW operation [1] is one that is associated
with a monotone group.
? This work has been partially supported by the Future and Emerging Technologies

program of the European Union under EU contracts 001907 (DELIS) and 015964
(AEOLUS), and by research funds from Rensselaer Polytechnic Institute and Uni-
versity of Cyprus.

175

An abstract concept defined in relation to monotone groups is that of n-
wise independence. Roughly speaking, n (other than the identity) elements of a
monotone group are n-wise independent if it is not possible to derive the identity
element of the group through some sequence of successive applications of the op-
erator on n of the elements or their inverses. A significant property of monotone
groups proved in [1] is that every monotone group is n-wise independent, in the
sense of having n-wise independent elements.

It has been established in [1] that the existence of n-wise independent ele-
ments in a monotone group is largely responsible for enforcing linearizability [5]
for certain suitable executions of a distributed system that implements the corre-
sponding (monotone) RMW operation; recall that an execution is linearizable [5]
if the values returned to operations in it respect the real-time ordering of the op-
erations. Indeed, the main conclusion of Busch et al. [1] is that the requirement
to guarantee the inherent linearizability for certain particular executions incurs
a high cost in efficiency for a certain class of highly concurrent, low-contention
implementations of (monotone) RMW that are based on switching networks [2].

1.2 The Monotone Linearizability Lemma

The Monotone Linearizability Lemma [1, Proposition 5.1] (repeated here as
Proposition 2) establishes inherent ordering constraints of linearizability for a
certain class of executions of any distributed system that implements a mono-
tone RMW operation. Interestingly, in these executions, the arguments of the
RMW operations performed by the n participating concurrent processes enjoy
together the group-theoretic property of n-wise independence over the associated
monotone group.

In order to gain some intuition for the Monotone Linearizability Lemma and
its proof, we offer a substantially simpler proof for a corresponding Monotone
Sequential Consistency Lemma (Proposition 1) that we prove here. In a corre-
sponding way, the Monotone Sequential Consistency Lemma establishes inherent
ordering constrains of sequential consistency [6] for a certain class of executions
of any distributed system that implements a monotone RMW operation. (Recall
that an execution is sequentially consistent [6] if the values returned to operations
at the same process respect the real-time ordering of the operations.)

1.3 Switching Networks

The Monotone Linearizability Lemma has been applied to implementations of
monotone RMW operations based on switching networks. The application has
yielded the first lower bounds on size for any highly concurrent, low-contention
switching network that implements a monotone RMW operation.

More specifically, Busch et al. [1] have obtained the following results for any
switching network other than the trivial single-switch one:

– If the switching network is made up of switches with a finite number of states
and it is low-contention, then it must contain an infinite number of switches,
even if concurrency is restricted to remain bounded (Theorem 1).

176

– If the switching network is made up of switches with an infinite number of
states and it is low-contention, then it must still contain an infinite number
of switches if concurrency is now allowed to grow unbounded (Theorem 2).

2 Monotone Groups

In this section, we review monotone groups, closely following [1, Section 2], where
all definitions and results come from. For the sake of completeness, all proofs are
repeated Section 2.1 reviews some very basic definitions from Group Theory.1

Some composite operators are introduced in Section 2.2. Section 2.3 provides the
basic definitions for monotone groups. Pairwise independence is introduced in
Section 2.4, while Section 2.5 establishes that all monotone groups are pairwise
independent. Similarly, n-wise independence is introduced in Section 2.6, while
Section 2.7 establishes that all monotone groups are n-wise independent.

Throughout this section (and in the rest of the paper), denote Z, IN and
Q the sets of integers, natural numbers (including zero), and rational numbers
(excluding zero), respectively. We will use + and · to denote the common (binary)
operators of addition and multiplication, respectively, on these sets. Denote ≤
the less-than-or-equal relation (total order) on these sets.

2.1 Groups and Abelian Groups

A (binary) operator (also called composition law) on a set IΓ is a mapping ⊕ :
IΓ× IΓ → IΓ. A group 〈IΓ,⊕〉 is a set IΓ, sometimes called the ground set, together
with an operator ⊕ such that the following properties hold:

1. Closure: For all pairs of elements a, b ∈ IΓ, a⊕ b ∈ IΓ.
2. Associativity: For all triples of elements a, b, c ∈ IΓ, (a⊕ b)⊕ c = a⊕ (b⊕ c).
3. Identity Element: There is an element a ∈ IΓ, called the identity element of

IΓ, such that for each element a ∈ IΓ, a⊕ e = e⊕ a = a.
4. Inverse Element: for each element a ∈ IΓ, there is an element a−1 ∈ IΓ, called

the inverse of a, such that a⊕ a−1 = a−1 ⊕ a = e.

An Abelian group is a group 〈IΓ,⊕〉 which satisfies the following additional
property:

5. Commutativity: For all pairs of elements a, b ∈ IΓ, a⊕ b = b⊕ a.

Note that e−1 = e. Note also that for any sequence of elements a, b, . . . ∈ IΓ,
the Associativity property implies that (a⊕ b⊕ . . .⊕ w)−1 = w−1 ⊕ . . .⊕ b−1 ⊕
a−1. Finally, the following elementary property of groups will be used in some
of our later proofs.

Property 1 (Cancellation Law). Consider any group 〈IΓ,⊕〉. Then, for any triple
of elements a, b, c ∈ IΓ, a⊕ b = a⊕ c (resp., b⊕ a = c⊕ a) implies b = c.

1 The interested reader may consult [4] for a general background in Group Theory.

177

2.2 Composite Operators

We proceed to define two composite operators by applying the (binary) operator
⊕ a number of times.

The Power Operator For any integer k, define the unary operator
⊕

k : IΓ →
IΓ as follows:

⊕

k

a =





a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
k times

, if k > 0

e , if k = 0
a−1 ⊕ a−1 ⊕ . . .⊕ a−1

︸ ︷︷ ︸
−k times

, if k < 0

Call
⊕

k the power operator. For any element a ∈ IΓ, use the power operator
⊕

k

defined for all integers k to define the set IΓa = {⊕k a | k ∈ Z}. Thus, 〈IΓa,⊕〉
is a cyclic group with generator a.

By the definition for the power operator, it follows that for any element
a ∈ IΓ and integer k,

⊕
k a =

⊕
−k a−1. We continue to prove two elementary

properties of the power operator that will be used in some of our later proofs.

Property 2 (Superposition of Powers). For any Abelian group 〈IΓ,⊕〉, fix any
element a ∈ IΓ. Then, for any sequence of integers k1, k2, . . . , kn,

(⊕

k1

a

)
⊕

(⊕

k2

a

)
⊕ . . .⊕

(⊕

kn

a

)
=

⊕
∑n

i=1
ki

a .

Proof. By definition of the power operator, each factor
⊕

ki
a, 1 ≤ i ≤ n, con-

tributes:

– either the element a ki times if ki > 0 (call these positive contributions),
– or the element a−1 −ki times if ki < 0 (call these negative contributions),
– or the identity element e if ki = 0 (call these zero contributions),

to the composite expression
(⊕

k1
a
) ⊕ (⊕

k2
a
) ⊕ . . . ⊕ (⊕

kn
a
)
. By the Com-

mutativity property, positive, negative and zero contributions can be separated
from each other in the composite expression. By definition of the power operator,
all zero contributions result to e; by the Associativity property, each pair of a
positive and a negative contribution cancels out. It follows that the composite
expression simplifies to

⊕∑n

i=1
ki

a, as needed. ut

We finally prove:

Property 3 (Composition of Powers). For any group 〈IΓ,⊕〉, fix any element
a ∈ IΓ. Then, for any integer k and natural number l,

⊕
k (

⊕
l a) =

⊕
k·l a.

Proof. Consider first the case l = 0.

178

– On one hand,
⊕

l a =
⊕

0 a = e (by definition of the power operator); so,

⊕

k

(⊕

l

a

)
=

⊕

k

e

=





e⊕ e⊕ . . .⊕ e︸ ︷︷ ︸
k times

, if k > 0

e , if k = 0
e−1 ⊕ e−1 ⊕ . . .⊕ e−1

︸ ︷︷ ︸
−k times

, if k < 0

= e ;

– On the other hand,
⊕

k·l a =
⊕

0 a = e (by definition of the power operator).

It follows that
⊕

k (
⊕

l a) =
⊕

k·l a for l = 0. So assume l > 0. Clearly,

⊕
k

(⊕
l

a

)

=





(⊕
l

a

)
⊕

(⊕
l

a

)
⊕ . . .⊕

(⊕
l

a

)

︸ ︷︷ ︸
k times

, if k > 0

e, if k = 0(⊕
l

a

)−1

⊕
(⊕

l

a

)−1

⊕ . . .⊕
(⊕

l

a

)−1

︸ ︷︷ ︸
−k times

, if k < 0

=





(a⊕ a⊕ . . .⊕ a)︸ ︷︷ ︸
l times

⊕ (a⊕ a⊕ . . .⊕ a)︸ ︷︷ ︸
l times

⊕ . . .⊕ (a⊕ a⊕ . . .⊕ a)︸ ︷︷ ︸
l times︸ ︷︷ ︸

k times

, if k > 0

e, if k = 0

(a⊕ a⊕ . . .⊕ a)−1

︸ ︷︷ ︸
l times

⊕ (a⊕ a⊕ . . .⊕ a)−1

︸ ︷︷ ︸
l times

⊕ . . .⊕ (a⊕ a⊕ . . .⊕ a)−1

︸ ︷︷ ︸
l times︸ ︷︷ ︸

−k times

, if k < 0

=





a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
k · l times

, if k > 0

e, if k = 0

(a−1 ⊕ a−1 ⊕ . . .⊕ a−1)︸ ︷︷ ︸
l times

⊕ . . .⊕ (a−1 ⊕ a−1 ⊕ . . .⊕ a−1)︸ ︷︷ ︸
l times︸ ︷︷ ︸

−k times

, if k < 0

179

=





a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
k · l times

, if k > 0

e, if k = 0

a−1 ⊕ a−1 ⊕ . . .⊕ a−1

︸ ︷︷ ︸
−k · l times

, if k < 0

=
⊕
k·l

a ,

as needed. ut

The Summation Operator For any integer n, the operator
⊎

n : IΓn → IΓ is
n-ary.

– For n = 0, it assumes the constant value
⊎

0 = e.
– For n = 1,

⊎
1{a} = a for all elements a ∈ IΓ. For n = −1,

⊎
−1{a} = a−1.

– For |n| ≥ 2.
⊎

n takes as input an ordered multiset of elements {a1, a2, . . . , a|n|}
∈ IΓ, and it yields the result

⊎
n

{a1, a2, . . . , an} =
{

a1 ⊕ a2 ⊕ . . .⊕ a|n| , if n ≥ 2
a−1
1 ⊕ a−1

2 ⊕ . . .⊕ a−1
|n| , if n ≤ −2

denoted also as
⊎n

i=1 ai. Note that, by associativity, the result of applying
the operator is well defined.

Call
⊎

the summation operator. Our definitions for the power and summation
operators immediately imply that for any element a ∈ IΓ and for any integer
n 6= 0,

⊕
n

a =





⊎
n





a, a, . . . , a︸ ︷︷ ︸
n times





, if n > 0

⊎
n





a, a, . . . , a︸ ︷︷ ︸
−n times





, if n < 0

So, roughly speaking, the power operator is some special case of the summation
operator where all inputs are identical.

The result
⊎

n {a1, a2, . . . , an} of the summation operator will sometimes be
called a composite expression.

180

2.3 Monotone Groups

Assume now that the set IΓ is totally ordered;2 thus, a total order ¹ is defined
on IΓ. For any pair of elements a, b ∈ IΓ, write a ≺ b (and, equivalently, b Â a) if
a ¹ b and a 6= b.

A monotone subdomain of IΓ is a subset IMI ⊆ IΓ that satisfies the following
three properties:

1. Closure: For any two elements a, b ∈ IMI, a⊕ b ∈ IMI.
2. Identity Lower Bound: For any element a ∈ IMI, e ≺ a.
3. Monotonicity under Composition: For any pair of elements a, b ∈ IMI, both

a ≺ a⊕ b and b ≺ a⊕ b.

Notice that the Identity Lower Bound property used in the definition of the
monotone subdomain IMI implies that e /∈ IMI, so that IMI ⊂ IΓ. Notice also
that the Monotonicity under Composition property used in the definition of the
monotone subdomain IMI implies that IMI is necessarily infinite. We are now ready
to define monotone groups.

Definition 1 (Monotone Group). A monotone group is a quadruple 〈IΓ, IMI,⊕,
¹〉, where 〈IΓ,⊕〉 is an Abelian group, ¹ is a total order on IΓ, and IMI ⊆ IΓ is a
monotone subdomain of IΓ.

We proceed with some examples of monotone groups that will be used in our
later analysis.

Example 1. The quadruple 〈Z, IN \ {0},+,≤〉.

Clearly, the quadruple 〈Z, IN \ {0},+,≤〉 is a monotone group, called Integers
with Addition. It is associated with the monotone Fetch&Add operation.

– From the definition of the power operator
⊕

k, for any integer k, we have
that for any integer a ∈ Z,

⊕
k a = k · a.

– From the definition of the summation operator
⊎k2

k1
, for any pair of in-

tegers k1 and k2, we have that for any sequence of k2 − k1 + 1 integers
ak1 , ak1+1, . . . , ak2 ∈ Z,

k2⊎

i=k1

ai =
k2∑

i=k1

ai .

ut

Example 2. The quadruple 〈Q, IN \ {0, 1}, ·,≤〉.
2 The idea of augmenting the ground set of group with some order (total or partial) has

also been followed in defining and studying partially ordered algebraic structures,
research on which has burgeoned in the last 50 years. However, the resulting partially
ordered groups [3] are completely different than the monotone groups introduced and
studied in this work.

181

Clearly, the quadruple 〈Q, IN \ {0, 1}, ·,≤〉 is also a monotone group, called Ra-
tionals with Multiplication. It is associated with the monotone Fetch&Multiply
operation.

– From the definition of the power operator
⊕

k, for any integer k, we have
that for any rational number a ∈ Q,

⊕
k a = ak.

– From the definition of the summation operator
⊎

, for any set of n integers
k1, k2, . . . , kn, we have that for any set of n rational numbers ak1 , ak1+1, . . . ,
ak2 ∈ Q,

k2⊎

i=k1

ai =
k2∏

i=k1

ai .

ut
We finally prove an elementary, non-idempotency property of monotone groups

that will be used in some of our later proofs.

Property 4 (No Idempotent Power). For any arbitrary monotone group 〈IΓ, IMI,⊕,¹
〉, fix any element a ∈ IMI. Then, for any integer k,

⊕
k a = e implies k = 0.

Proof. Assume, by way of contradiction, that k 6= 0. Consider first the case
where k > 0. Then,

⊕

k

a

= a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
k times

(by definition of the power operator)

Â e (by Monotonicity under Composition) ,

a contradiction.
Consider now the case where k < 0. By definition of the power operator and

associativity, it follows that

a−1 ⊕ a−1 ⊕ . . .⊕ a−1

︸ ︷︷ ︸
−k times

= e

=


a−1 ⊕ a−1 ⊕ . . .⊕ a−1

︸ ︷︷ ︸
−k times


⊕


a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸

−k times


 .

By Property 1, it follows that

e = a⊕ a⊕ . . .⊕ a︸ ︷︷ ︸
−k times

.

Since −k > 0, we are reduced to the first case, and the proof is now complete. ut
We remark that the proof of Property 4 relied on using the Monotonicity

under Composition property that holds specifically for monotone groups. So, it
is no coincidence that Property 4 does not necessarily hold for a general group.

182

2.4 Pairwise Independence

Consider any two distinct elements a1, a2 ∈ IΓ with a1, a2 6= e. Say that a1 and
a2 are pairwise independent over 〈IΓ,⊕〉 if for any integer k, both a1 6=

⊕
k a2

and a2 6=
⊕

k a1. Thus, neither a1 nor a2 may result by repetitive application of
the operator on the other or on the inverse of the other. We are now ready to
define a pairwise independent monotone group.

Definition 2 (Pairwise Independent Monotone Group). Say that the mono-
tone group 〈IΓ, IMI,⊕,¹〉 is pairwise independent if there are two distinct ele-
ments a1, a2 ∈ IMI, with a1, a2 6= e, that are pairwise independent over 〈IΓ,⊕〉.

We continue with two examples of pairwise independent monotone groups.

Example 3. Pairwise independence of the monotone group 〈Z, IN \ {0}, +,≤〉.
From the definition of pairwise independence, two integers a1, a2 ∈ Z, with
a1, a2 6= 0, are pairwise independent in 〈Z+〉 if for any integer k, both a1 6= k ·a2

and a2 6= k ·a1. For any integer a ≥ 2, consider the consecutive natural numbers
a and a+1; so, a, a+1 ∈ IN \ {0}. Clearly, for any integer k, both a 6= k · (a+1)
and a+1 6= k ·a. It follows that a and a+1 are pairwise independent over 〈Z,+〉.
Hence, the monotone group 〈Z, IN \ {0}, +,≤〉 is pairwise independent. ut
Example 4. Pairwise independence of the monotone group 〈Q, IN \ {0, 1}, ·,≤〉.
From the definition of pairwise independence, two rational numbers a1, a2 ∈ Q,
with a1, a2 6= 1, are pairwise independent in 〈Q, ·〉 if for any integer k, both
a1 6= ak

2 and a2 6= ak
1 . Consider any pair of distinct prime numbers p1 and p2

greater than 1; so p1, p2 ∈ IN\{0, 1}. Clearly, for any integer k, both p1 6= pk
2 and

p2 6= pk
1 . It follows that p1 and p2 are pairwise independent over 〈Q, ·〉. Hence,

the monotone group 〈Q, IN \ {0, 1}, ·,≤〉 is pairwise independent. ut

2.5 Pairwise Independence of All Monotone Groups

Busch et al. [1] prove that every monotone group is pairwise independent.

Lemma 1 (Every Monotone Group is Pairwise Independent). Every
monotone group 〈IΓ, IMI,⊕,¹〉 is pairwise independent.

Proof. Since the monotone group 〈Z, IN \ {0}, +,≤〉 is pairwise independent (see
Example 3), there exist distinct natural numbers l1 and l2 in IN \ {0} that are
pairwise independent over 〈Z, +〉. Fix now any arbitrary element a ∈ IMI, and
consider the elements

⊕
l1

a and
⊕

l2
a. Clearly, by monotonicity under compo-

sition, these two elements are distinct. We will prove that
⊕

l1
a and

⊕
l2

a are
pairwise independent over 〈IΓ,⊕〉.

Assume, by way of contradiction, that the elements
⊕

l1
a and

⊕
l2

a are not
pairwise independent over 〈IΓ,⊕〉. So, there exists some integer k such that either⊕

l1
a =

⊕
k

(⊕
l2

a
)

or
⊕

l2
a =

⊕
k

(⊕
l1

a
)
. Assume, without loss of generality,

183

that
⊕

l1
a =

⊕
k

(⊕
l2

a
)
. By Property 3, this implies that

⊕
l1

a =
⊕

k·l2 a.
It follows that

(⊕
l1

a
) ⊕ (⊕

−k·l2 a
)

=
(⊕

k·l2 a
) ⊕ (⊕

−k·l2 a
)
. By Property 2,

this implies that
⊕

l1−k·l2 a =
⊕

k·l2−k·l2 a, or
⊕

l1−k·l2 a = e. By Property 4, it
follows that l1 − k · l2 = 0 or l1 = k · l2. Thus, the natural numbers l1 and l2 are
not pairwise independent over 〈Z, +〉. A contradiction. ut

2.6 n-Wise Independence

Fix any integer n ≥ 2. Consider any n distinct elements a1, a2, . . . , an ∈ IΓ with
a1, a2, . . . , an 6= e. Say that a1, a2, . . . , an are n-wise independent over 〈IΓ,⊕〉 if
for any sequence of n integers k1, k2, . . . , kn, where −1 ≤ ki ≤ 2 for 1 ≤ i ≤ n,
that are not all simultaneously zero,

⊎n
i=1

⊕
ki

ai 6= e. Busch et al. [1] define an
n-wise independent monotone group.

Definition 3 (n-Wise Independent Monotone Group). Say that the mono-
tone group 〈IΓ, IMI,⊕,¹〉 is n-wise independent if there are n distinct elements
a1, a2, . . . , an ∈ IMI, with a1, a2, . . . , an 6= e, that are n-wise independent over
〈IΓ,⊕〉.

Note that n-wise independence is not just a trivial generalization (from 2
to n) of pairwise independence, since it imposes constraints on the integers ki,
1 ≤ i ≤ n (namely, that −1 ≤ ki ≤ 2). Notice that, in particular, 2-wise
independence and pairwise independence are not identical concepts.

¿From the definition of n-wise independence, n integers a1, a2, . . . , an ∈ Z,
where n ≥ 2, are n-wise independent over 〈Z, +〉 if for any sequence of n integers
k1, k2, . . . , kn ∈ {−1, 0, 1, 2}, which are not all simultaneously zero,

∑n
i=1 ki ·ai 6=

0.
Busch et al. [1] observe that for any integer n ≥ 2, the monotone group

〈Z, IN \ {0}, +,≤〉 is n-wise independent.

Lemma 2. For any integer n ≥ 2, the monotone group 〈Z, IN \ {0}, +,≤〉 is
n-wise independent.

Proof. Fix any integer ` ≥ 0. Consider the n natural numbers 2`, 2`+2, . . . ,
2`+2(n−1) ∈ IN \ {0}, which are powers of two; we will prove that these n natural
numbers are n-wise independent over 〈Z,+〉. The proof is by induction on n.

For the basis case where n = 2, consider the natural numbers 2` and 2`+2. Fix
any pair of integers k1, k2 ∈ {−1, 0, 1, 2} that are not both simultaneously zero.
Clearly, k12` + k22`+2 = 2`(k1 +4k2), which can be zero only if k1 = k2 = 0. So,
the natural numbers 2`, 2`+2 ∈ IN\{0} are 2-wise independent over 〈Z, +〉. Hence,
the monotone group 〈Z, IN\{0},+,≤〉 is 2-wise independent. This completes the
proof of the basis case.

Assume inductively that the n−1 natural numbers 2`, 2`+2, . . . , 2`+2((n−1)−1)

= 2`+2(n−2) ∈ IN \ {0} are (n− 1)-wise independent over 〈Z, +〉.
For the induction step, we will show that the n natural numbers 2`, 2`+2, . . . ,

2`+2(n−1) are n-wise independent in 〈Z, +〉. Assume, by way of contradiction,
that they are not. Thus, there exist n integers k1, k2, . . . , kn ∈ {−1, 0, 1, 2} which

184

are not all simultaneously zero, such that
∑n

i=1 ki2`+2(i−1) = 0. We proceed by
case analysis on the value of kn ∈ {−1, 0, 1, 2}.
– Assume first that kn = −1. Then,

∑n−1
i=1 ki2`+2(i−1) − 2`+2(n−1) = 0, or∑n−1

i=1 ki2`+2(i−1) = 2`+2(n−1), or
∑n−1

i=1 ki22(i−1) = 22(n−1). However, since
ki ≤ 2 for all indices i, 1 ≤ i ≤ n− 1,

n−1∑

i=1

ki22(i−1) ≤ 2
n−1∑

i=1

22(i−1)

< 2 ·
2n−4∑

i=0

2i

= 2
(
22n−3 − 1

)
< 22n−2 = 22(n−1) ,

a contradiction.
– Assume now that kn = 0. Then,

∑n−1
i=1 ki2`+2(i−1) = 0. Since the integers

k1, k2, . . . , kn are not all simultaneously zero while kn = 0, it follows that the
integers k1, k2, . . . , kn−1 are not all simultaneously zero. This implies that the
n − 1 natural numbers 2`, 2`+2, . . . , 2`+2(n−2) are (n − 1)-wise independent
over 〈Z, +〉, which contradicts the induction hypothesis.

– Assume finally that kn ∈ {1, 2}. Then,
∑n−1

i=1 ki2`+2(i−1) +kn ·2`+2(n−1) = 0,
or, equivalently, −∑n−1

i=1 ki2`+2(i−1) = kn · 2`+2(n−1), or −∑n−1
i=1 ki22(i−1) =

kn · 22(n−1). However, since ki ≥ −1 for all indices i, 1 ≤ i ≤ n− 1,

−
n−1∑

i=1

ki22(i−1) ≤
n−1∑

i=1

22(i−1)

<

2n−4∑

i=0

2i

= 22n−3 − 1 < 22n−2 = 22(n−1) ≤ kn · 22(n−1) ,

a contradiction.

Since we obtained a contradiction in all possible cases, the proof is now complete.
ut

Busch et al. [1] also prove:

Lemma 3. For any integer n ≥ 2, the monotone group 〈Q, IN \ {0, 1}, ·,≤〉 is
n-wise independent.

Proof. From the definition of n-wise independence, n rational numbers a1, a2,
. . . , an ∈ Q are n-wise independent over 〈Q, ·〉 if for any sequence of n integers
k1, k2, . . . , kn ∈ {−1, 0, 1, 2}, which are not all simultaneously zero,

∏n
i=1 aki

i 6= 1.
Consider any n distinct prime numbers p1, p2, . . . , pn ∈ IN \ {0, 1}. Then,∏n

i=1 pki
i is a rational number whose numerator and denominator have no com-

mon factors; so
∏n

i=1 pki
i 6= 1. Thus, the n prime numbers p1, p2, . . . , pn are

n-wise independent over Q. Hence, the monotone group 〈Q, IN \ {0, 1}, ·,≤〉 is
n-wise independent, as needed. ut

185

2.7 n-Wise Independence of All Monotone Groups

The main result of Busch et al. [1] has been that every monotone group is n-wise
independent.

Lemma 4 (Every Monotone Group is n-Wise Independent). For any
integer n ≥ 2, the monotone group 〈IΓ, IMI,⊕,¹〉 is n-wise independent.

Proof. Since the monotone group 〈Q, IN\{0}, +,≤〉 is n-wise independent (Lemma
2), there exist n distinct natural numbers l1, l2, . . . , ln ∈ IN \ {0} that are n-wise
independent over 〈Z, +〉. Fix any element a ∈ IMI. and consider the n elements⊕

l1
a,

⊕
l2

a, . . . ,
⊕

ln
a of IMI. Clearly, by the Monotonicity under Composition

property of the monotone group 〈IΓ, IMI,⊕,¹〉, these n elements are distinct. We
will prove that they are also n-wise independent over 〈IΓ,⊕〉.

Assume, by way of contradiction, that the elements
⊕

l1
a,

⊕
l2

a, . . . ,
⊕

ln
a

are not n-wise independent over 〈IΓ,⊕〉. Thus, there exist n integers k1, k2, . . . , kn

∈ {−1, 0, 1, 2}, which are not all simultaneously zero, such that

n⊎

i=1

(⊕

ki

(⊕

li

a

))
= e .

By Property 3, it follows that

n⊎

i=1

(⊕

ki·li
a

)
= e ,

which, by the definition of the summation operator, may be written as
(⊕

k1·l1
a

)
⊕

(⊕

k2·l2
a

)
⊕ . . .⊕

(⊕

kn·ln

)
= e .

By Property 2, it follows that
⊕

∑n

i=1
ki·li

a = e .

Property 4, now implies that
∑n

i=1 ki ·li = 0. Since the integers ki, 1 ≤ i ≤ n, are
from the set {−1, 0, 1, 2}, and they are not all simultaneously zero, this implies
that the n natural numbers l1, l2, . . . , ln are not n-wise independent over 〈Z,+〉.
A contradiction. ut

The proof of Lemma 4 employs the n-wise independence of the monotone
group 〈Q, IN \ {0, },+,≤〉 (established in Lemma 2) in order to conclude the
n-wise independence of the arbitrary monotone group 〈IΓ, IMI,⊕,≤〉. So, this
proof by reduction indicates some kind of completeness of the monotone group
〈Q, IN \ {0, }, +,≤〉 for the class of all n-wise independent monotone groups.

186

3 Distributed System

Our model of a distributed system is patterned after the one in [5, Section 2],
adjusted to incorporate the implementation of a monotone group 〈IΓ, IMI,⊕,¹〉.

We consider a distributed system P consisting of a collection of sequential
threads of control, called processes. Processes are sequential, and each process
applies a sequence of operations to a distributed data structure, called the object,
alternately issuing an invocation and then receiving the associated response.
Each invocation at process pi has the form Invokei(a) for some value a ∈ IMI;
each response at process pi has the form Responsei(b) for some value b ∈ IMI∪{e}.

Formally, an execution of system P is a (possibly infinite) sequence α of
invocation and response events. We assume that for each invocation at process pi

in execution α, there is a later response in α that matches it and no invocation at
pi that precedes the matching response in α. Prefixes and suffixes of an execution
are defined in the natural way. Say that an execution γ extends a prefix β of
execution α if β is a prefix of γ as well.

An operation at process pi in execution α is a matching pair opi = [Invokei(a),
Responsei(b)] of an invocation and response at pi; we will sometimes say that opi

is of type a. For such an operation, we will write a = In(opi) and b = Out(opi);
thus, opi has input and output a and b, respectively.

An execution α induces a partial order α−→ on the set of operations in α as
follows.

For any pair of operations

opi1 = [Invokei1(a1), Responsei1
(b1)]

and

opi2 = [Invokei2(a2), Responsei2
(b2)]

at processes pi1 and pi2 , respectively, say that opi1 precedes opi2 in exe-
cution α, denoted opi1

α−→ opi2 , if the response Responsei1
(b1) precedes

the invocation Invokei2(a2).

In particular, execution α induces, for each process pi a total order α−→i on the
set of operations at pi in α as follows.

For any two operations op(1)
i and op(2)

i , op(1)
i

α−→i op(2)
i if and only if

op(1)
i

α−→ op(2)
i .

If, in execution α, operation opi1 does not precede operation opi2 , then we
write opi1 6

α−→ opi2 . If simultaneously opi1 6
α−→ opi2 and opi2 6

α−→ opi1 , then we
say that opi1 and opi2 are parallel in execution α, denotedk as opi1 ‖α opi2 .

For any execution α of system P, a serialization S(α) of execution α is
a sequence whose elements are the operations of α, and each operation of α

appears exactly once in S(α). Thus, a serialization S(α) is a total order
S(α)−→ on

187

the set of operations in α. Notice that there may be, in general, many possible
serializations of the execution α.

Say that a serialization S(α) is valid for the monotone group 〈IΓ, IMI,⊕,¹〉 if
the following two conditions hold:

1. Valid Start: If opi = [Invokei(a), Responsei(b)] is the first operation in S(α),
then b = e.

2. Valid Composition: For any pair of operations op(1)
i1

= [Invokei1(a1),
Responsei1

(b1)] and op(2)
i2

= [Invokei2(a2), Responsei2
(b2)] that are consec-

utive in S(α), b2 = b1 ⊕ a1.

Sometimes we shall simply refer to a valid serialization, and avoid explicit refer-
ence to the monotone group when such is clear from context. We are now ready
to provide an important definition.

Definition 4 (Implementation of Monotone Group). System P imple-
ments the monotone group 〈IΓ, IMI,⊕,¹〉 if every execution α of P has a serial-
ization that is valid for the monotone group.

Denote RMW (〈IΓ, IMI,⊕,¹〉) the Read&Modify&Write operation associated
with the monotone group 〈IΓ, IMI,⊕,¹〉 in the natural way. So, in particular,
RMW (〈Z, IN \ {0}, +,≤〉) and RMW (〈Q, IN \ {0, 1}, ·,≤〉) are the RMW opera-
tions Fetch&Add and Fetch&Multiply, respectively. Monotone RMW operations
are those associated with monotone groups. Say that system P implements the
(monotone) operation RMW (〈IΓ, IMI,⊕,¹〉) whenever it implements the associ-
ated monotone group.

In our later definitions and proofs, we will sometimes write Inα(op) and
Outα(op) in order to emphasize reference to execution α.

We conclude this section with an immediate consequence of the Valid Start
and Valid Composition conditions assumed in Definition 4.

Property 5. Assume that system P implements the monotone group 〈IΓ, IMI,⊕,¹
〉. Then, for any operation op in an execution α of P,

Outα (op) =
⊎

‖{op′ | op′
α−→op}‖

{
Inα (op′) | op′ α−→ op

}
.

Our particular definitions for sequential consistency and linearizability will
refer to any arbitrary execution α of the system P, and to its valid serialization
S(α).

Say that a process pi is sequentially consistent in execution α [6] if the seri-
alization S(α) extends α−→i; that is, for any pair of operations op(1)

i and op(2)
i

such that op(1)
i

α−→i op(2)
i , op(1)

i

S(α)−→ op(2)
i . The Valid Composition condition

implies that for any two operations op(1)
i and op(2)

i such that op(1)
i

S(α)−→ op(2)
i ,

Out(op(1)
i) ≺ Out(op(2)

i). Thus, it follows that for any process pi that is sequen-
tially consistent in execution α, for any pair of operations op(1)

i and op(2)
i such

that op(1)
i

α−→ op(2)
i , Out(op(1)

i) ≺ Out(op(2)
i).

188

Say that operation op(1)
i at process pi in execution α is sequentially incon-

sistent in execution α if there is another operation op(2)
i at the same process in

execution α such that op(2)
i

α−→ op(1)
i while op(2)

i

S(α)−→ op(1)
i . Say that operation

op(1)
i at process pi in execution α is sequentially consistent in execution α if it

is not sequentially inconsistent in execution α. Clearly, process pi is sequentially
consistent in execution α if every operation opi at process pi in execution α is
sequentially consistent in it.

Say that execution α is sequentially consistent [6] if every process pi is se-
quentially consistent in α. It follows that execution α is sequentially consistent
if every operation in execution α is sequentially consistent in it. Finally, say that
the system P is sequentially consistent if all its executions are.

Say that execution α is linearizable [5] if the serialization S(α) extends α−→;
that is, for any pair of operations op(1) and op(2) such that op(1) α−→ op(2),

op(1) S(α)−→ op(2). The Valid Composition condition implies that for any two oper-

ations op(1) and op(2) such that op(1) S(α)−→ op(2), Out(op(1)) ≺ Out(op(2)). Thus,
it follows that for any pair of operations op(1) and op(2) such that op(1) α−→ op(2),
Out(op(1)) ≺ Out(op(2)). Finally, say that system P is linearizable if all its exe-
cutions are.

4 The Monotone Linearizability Lemma

Throughout this section, we refer to a distributed system P implementing a
monotone group 〈IΓ, IMI,⊕,¹〉. The Monotone Linearizability Lemma [1, Propo-
sition 5.1] establishes ordering constraints of linearizability on the system P.
However, in order to provide the reader with useful intuition for the Monotone
Linearizability Lemma and its proof, we prove instead a corresponding Monotone
Sequential Consistency Lemma, which establishes similar ordering constraints of
sequential consistency on the system P. The proof of the Monotone Sequential
Consistency Lemma is substantially simpler and more succinct than the one of
the Monotone Linearizability Lemma appearing in [1].

Recall that, by Lemma 1, the monotone group 〈IΓ, IMI,⊕,¹〉 is pairwise inde-
pendent. So, there are two distinct elements a1, a2 ∈ IMI, with a1, a2 6= e, that are
pairwise independent over 〈IΓ,⊕〉. The proof of the Monotone Sequential Consis-
tency Lemma amounts to establishing a contradiction to pairwise independence
for a hypothetical non-sequentially consistent execution, in which the types of
the RMW operations issued by the processes are a1 and a2. We are now ready
to state and prove the Monotone Sequential Consistency Lemma.

Proposition 1 (Monotone Sequential Consistency Lemma). Consider an
execution α of system P in which process p1 issues only operations of type a1,
while any other process pi, i 6= 1, issues only operations of type a2. Then, p1 is
sequentially consistent in execution α.

Proof. We start with an informal outline of our proof. We will proceed by con-
tradiction. So, we will consider the earliest sequentially inconsistent operation

189

op(1)
1 at process p1, and the latest operation op(1)

1 (at p1) that precedes it. We
will use these operations to construct two executions γ1 and γ2 that are indistin-
guishable to process p1 with respect to operation op(2)

1 . This indistinguishability
implies that op(2)

1 receives the same output in these two executions. Then, the
contradiction will follow from the comparison of the two identical outputs. where
we use simple algebraic properties of (monotone) groups in order to contradict
the assumed pairwise independence. We now continue with the details of the
formal proof.

Assume, by way of contradiction, that process p1 is not sequentially consistent
in execution α. So, there is at least one operation at p1 that is sequentially
inconsistent in execution α. Consider the earliest such operation op(1)

1 , and let
op(2)

1 be the latest operation at process p1 that precedes op(1)
1 in α. So, op(2)

1
α−→

op(1)
1 while op(1)

1

S(α)−→ op(2)
1 , where S(α) is the (unique) valid serialization of α.

Denote k ≥ 0 the number of operations at p1 that precede op(2)
1 in execution

α. Since all these operations are sequentially consistent in execution α, they
precede op(2)

1 in S(α) as well.
In our proof, we will use the operations op(1)

1 and op(2)
1 in order to define

and treat two finite prefixes of execution α:

– the finite prefix β1 of execution α that ends with the response for operation
op(1)

1 , and
– the finite prefix β2 of execution α that ends with the response for operation

op(2)
1 .

Clearly, β2 is a prefix of β1 as well. We first treat separately each of the two
prefixes β1 and β2, and its corresponding extension; we then treat them together.
Properties of the prefix β1 and its extension γ1:
Consider a finite execution γ1, which is an extension of β1 that includes no
additional invocations by processes; so, γ1 is an extension of β1 that additionally
includes only responses to invocations that are pending in β1.

Since β1 is a prefix of both α and γ1, it follows that all operations whose
responses are included in β1 (or, in other words, they are not preceded in either α

or γ1 by the response for op(1)
1) have identical outputs in α and γ1. In particular,

Outα
(
op(1)

1

)
= Outγ1

(
op(1)

1

)
and Outα

(
op(2)

1

)
= Outγ1

(
op(2)

1

)
. Take now the

(unique) valid serialization S(γ1) of γ1.

Since op(1)
1

S(α)−→ op(2)
1 , the Valid Composition condition (for S(α)) implies

that Outα
(
op(1)

1

)
≺ Outα

(
op(2)

1

)
. Since Outα

(
op(1)

1

)
= Outγ1

(
op(1)

1

)
and

Outα
(
op(2)

1

)
= Outγ1

(
op(2)

1

)
, it follows that Outγ1

(
op(1)

1

)
≺ Outγ1

(
op(2)

1

)
.

The Valid Composition condition (for S(γ1)) implies now that op(1)
1

S(γ1)−→ op(2)
1 ,

Since the outputs of the k operations (of type a1) at p1 that precede op(2)
1

in execution α. are identical in α and γ1, the Valid Composition condition (for
γ1) implies that all these operations precede op(2)

1 in S(γ1) as well.

190

Denote l1 the number of operations at other processes that precede op(2)
1 in

the serialization S(γ1); recall that all these operations are of type a2.
By Property 5, Outγ1

(
op(2)

1

)
is a composite expression involving k + 1 con-

tributions of a1 and l1 contributions of a2. By the Commutativity property, these
two types of contributions can be separated from each other in the composite
expression, so that

Outγ1

(
op(2)

1

)
=

⊕

k+1

a1 ⊕
⊕

l1

a2 .

Properties of the prefix β2 and its extension γ2:
Consider a finite execution γ2, which is an extension of β2 that includes no
additional invocations by processes; so, γ2 is an extension that only includes
responses to invocations that are pending in β2.

Since β2 is a prefix of both α and γ2, it follows that all operations whose
responses are included in β2 (hence, they are not preceded in either α or γ2

by the response for op(2)
1) have identical outputs in α and γ2. In particular,

Outα
(
op(2)

1

)
= Outγ2

(
op(2)

1

)
. Take now the (unique) valid serialization S(γ2)

of execution γ2.
Since the outputs of the k operations (of type a1) at p1 that precede op(2)

1

in execution α. are identical in α and γ2, the Valid Composition condition (for
γ2) implies that all these operations precede op(2)

1 in S(γ2) as well.
Denote l2 the number of operations (all of type a2) at other processes that

precede op(2)
1 in the serialization S(γ2).

By Property 5, Outγ2

(
op(2)

1

)
is a composite expression involving k contri-

butions of a1 and l2 contributions of a2. By the Commutativity property, these
two types of contributions can be separated from each other in the composite
expression, so that

Outγ2

(
op(2)

1

)
=

⊕

k

a1 ⊕
⊕

l2

a2 .

Joint properties of prefixes β1 and β2 and their extensions γ1 and γ2:

Recall that Outα
(
op(2)

1

)
= Outγ1

(
op(2)

1

)
and Outα

(
op(2)

1

)
= Outγ2

(
op(2)

1

)
;

hence, it follows that Outγ1

(
op(2)

1

)
= Outγ2

(
op(2)

1

)
, so that

⊕

k+1

a1 ⊕
⊕

l1

a2 =
⊕

k

a1 ⊕
⊕

l2

a2 .

By Property 2,
⊕

l2
a2 =

⊕
l2−l1

a2 ⊕
⊕

l1
a2. Hence, by Property 1, it follows

that a1 =
⊕

l2−l1
a2. So, a1 and a2 are not pairwise independent over 〈IΓ,⊕〉. A

contradiction. ut
We now return to the Monotone Linearizability Lemma. Recall that, by

Lemma 4, the monotone group 〈IΓ, IMI,⊕,¹〉 is n-wise independent for any

191

integer n ≥ 2. So, there are n distinct elements a1, a2, . . . , an ∈ IMI, with
a1, a2, . . . , an 6= e, which are n-wise independent over 〈IΓ,⊕〉. The proof of the
Monotone Linearizability Lemma [1, Proposition 5.1] amounts to establishing
a contradiction to n-wise independence for a hypothetical non-linearizable exe-
cution, in which the types of the RMW operations issued by the processes are
a1, a2, . . . , an.

Proposition 2 (Monotone Linearizability Lemma). Consider any execu-
tion α of system P in which each process pi issues only operations of type ai,
where 1 ≤ i ≤ n. Then, α is linearizable.

5 Application to Switching Networks

A switching network [2] is a directed, acyclic graph made up of nodes called
switches and output registers, and edges called wires. Whenever a process issues
a RMW operation, it shepherds a token through the network, which traverses a
path of switches. Both switches and tokens have internal states. A token arrives
at a switch via an input wire. In a single atomic step, the switch and the token
change their states, and the token leaves the switch on an output wire. The token
is eventually returned a value when it arrives at an output register.

Clearly, concurrent processes are spatially dispersed in a switching network,
which reduces their simultaneous crossings in front of the same memory location
(switch or output register). This offers potential for low contention.

The size of a switching network is the total number of switches in it; its
latency is the maximum number of switches traversed by a token shepherding
a RMW operation through the network. Thus, size and latency are two natural
measures for space complexity and time complexity, respectively, in the model
of switching networks.

The concurrency of a switching network is the maximum number of concur-
rent processes that may simultaneously shepherd a RMW operation through the
network.

In order to model the low-contention property for switching networks, Busch
et al. [1] introduced register bottleneck and layer bottleneck; roughly speaking,
both register bottleneck and layer bottleneck measure the minimum number
of network elements (either switches or output registers) that are accessed by
processes in any infinite execution. (Layer bottleneck assumes partitioning the
switches of the network into layers in the natural way.) Intuitively, if this min-
imum number is small, some network element will become a bottleneck (or a
“hot-spot” in the pool of memory locations) in some infinite execution and the
network incurs high contention; hence, a switching network is low-contention if
register bottleneck and layer bottleneck are sufficiently large.

For switching networks with switches with a finite number of states, Busch
et al. [1, Theorem 6.1] prove:

Theorem 1 (Impossibility Result for Finite-Switch Networks). There
exists no non-trivial, finite-switch switching network N with concurrency

192

(or(N) + 1) ·(Ssize(N) + 1
)

that has finite size, incurs register bottleneck at least
2 and implements a monotone group 〈IΓ, IMI,⊕,¹〉.

For switching networks with switches with an infinite number of states, Busch
et al. [1, Theorem 6.2] prove:

Theorem 2 (Impossibility Result for Infinite-Switch Networks). There
exists no non-trivial, infinite-switch switching network with unbounded concur-
rency that has finite size, incurs layer bottleneck at least 2 and implements a
monotone group 〈IΓ, IMI,⊕,¹〉.

6 Epilogue

We surveyed an algebraic approach toward proving impossibility results in dis-
tributed computing, based on a new class of algebraic groups, called monotone
groups, recently introduced by Busch et al. [1]. The approach is both interest-
ing and promising. We would like to use monotone groups for investigating the
possibility or impossibility of implementing other, non-monotone RMW opera-
tions with finite-sized, highly concurrent, low-contention switching networks, or
in other (than switching networks) models of distributed computing.

References

1. Busch, C., Mavronicolas, M., Spirakis, P.: The Cost of Concurrent, Low-Contention
Read&Modift&Write. Theoretical Computer Science 333(3) (2005) 373–400

2. Fatourou, P., Herlihy, M.: Read-Modify-Write Networks. Distributed Computing 17
(2004) 33–46

3. Glass, A. M. W.: Partially Ordered Groups. Series in Algebra, 7. World Scientific
(1999)

4. M. Hall, Jr.: Theory of Groups. Second Edition, Chelsea Publishing Company (1979)
5. Herlihy, M., Wing, J.: Linearizability: A Correctness Condition for Concurrent Ob-

jects. ACM Transactions on Programming Languages and Systems 12(3) (1990) 463–
492

6. Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers C-28(9) (1979) 690–691

193

194

