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Abstract. Fuzzy languages and fuzzy automata are considered using
techniques from algebraic theory of automata. Syntactic monoids of fuzzy
languages play a crucial role in the study. Varieties of fuzzy languages are
introduced and an Filenberg-type correspondence between varieties of
fuzzy languages, varieties of ordinary languages and varieties of monoids
is established.

1 Introduction

Fuzzy sets were introduced by Zadeh in [19] and since then have appeared in
many fields of sciences. They have been studied within automata theory for the
first time by Wee in [18]. More on recent development of algebraic theory of fuzzy
automata and formal fuzzy languages can be found in the book by Malik and
Mordeson [9]. On the other hand, variety theory establishes correspondences be-
tween families of languages, algebras, semigroups and relations. The elementary
result of this type is Eilenberg’s Variety theorem [4] which was motivated by
characterizations of several families of languages by syntactic monoids or semi-
groups, such as Schiitzenberger’s theorem [14] connecting star-free languages and
aperiodic monoids. Eilenberg’s theorem has been extended in various directions
(see, for example [17,12,13,1,16,5, 10, 11]).

This work is an attempt to apply well-known techniques from algebraic the-
ory of ordinary automata in studying fuzzy automata and languages. Syntactic
monoids of fuzzy languages are defined and it is shown that they can be com-
puted as transition monoids of recognizers of the fuzzy languages. Moreover, va-
rieties of fuzzy languages are introduced and an Eilenberg-type correspondence
between them, varieties of ordinary languages and varieties of finite monoids is
established.

Let us recall basic concepts and notation.

A fuzzy subset a of a set A is a mapping « : A — [0,1]. By A and V infimum
and supremum in the unit segment [0,1] will be denoted, respectively. Clearly,
every (ordinary) subset H of A, also called crisp subset, can be considered as a
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fuzzy subset of A with
l,ae H
H{a) = {O, ad¢ H
Thus when saying H C A we may mean that H is the above mapping.

A fuzzy automaton is a tuple A = (A, X, u), where A is a finite set of states, X
is a finite set of input symbols and p is a fuzzy subset of A x X x A representing
the transition mapping. This mapping can be represented by the collection of
fuzzy matrices {M(z) = [pu(a,x,b)]lapeca | ¢ € X}, ie., matrices with entries
from [0,1].

By X* the free monoid, i.e., the set of all words with letters from X, is
denoted. The empty word is denoted by e. As proved in [8], mapping p can be
extended to the set A x X* x A by

l,a=5b

:u(a’v ux, b) = \/CEA(M(G/7 u, C) A M(C7 €, b))

foralla,be A, x € X, ue X*.

A fuzzy language over an alphabet X is a fuzzy subset of X*. A fuzzy recog-
nizeris a tuple A = (A, X, u, ¢, 7) where (A, X, ) is a fuzzy automaton, ¢ and 7
are fuzzy subsets of A of initial and final states, respectively. The fuzzy language
A recognized by A is

AMu) = \/ \/ (¢(a) A p(a,u,b) A7(b)).
acAbeA

A deterministic fuzzy recognizer is a fuzzy recognizer with deterministic transi-
tion mapping, usually denoted by §, and crisp one-element set of initial states.
It was proved in [2] that a fuzzy language is recognizable by a fuzzy recognizer
if and only if it is recognizable by a deterministic fuzzy recognizer.

It can be noticed that fuzzy languages are formal power series and fuzzy
recognizers are weighted automata over the semiring ([0, 1], V, A,0,1) (see, for
example [6, 3]).

2 Regular fuzzy languages

A fuzzy language is regular if it is recognizable by a fuzzy automaton. In this
section many concepts and results known for ordinary languages will be extended
to fuzzy languages.

Let X be an alphabet, p an equivalence on X* and A a fuzzy language
over X. Then p is said to saturate X if (u,v) € p implies A(u) = A(v) for any
u,v € X*. Clearly, in the case of ordinary languages this becomes usual concept
of saturation.

Lemma 1. Let A be a fuzzy language over an alphabet X. Then the relations
defined on X* by

(u,v) € Py & (Vp,q € X*) Mpuq) = A(pvq)
(u,v) € Ry & (Vg € X*) AMug) = A(vq)
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are the greatest congruence and the greatest right congruence, respectively, satu-
rating .

The monoid X*/Pj is the syntactic monoid of A, in notation Syn(A).

A fuzzy language A over an alphabet X is recognizable by a monoid S if there
is a homomorphism ¢ : X* — S and a fuzzy subset 7 of S such that A = ¢!,
where m¢ ! (u) = 7 (ue).

A monoid S is said to divide a monoid T if S is a homomorphic image of
a submonoid of T'. The proof of the following theorem resembles proofs of the
analogous results for crisp languages.

Theorem 1. (a) A monoid S recognizes a fuzzy language A by a homomorphism
o : X* — S if and only if ker ¢ saturates .
(b) A monoid S recognizes a fuzzy language X if and only if Syn(\) divides S.

The next theorem represents Myhill-Nerode theorem for fuzzy languages.

Theorem 2. The following conditions are equivalent for a fuzzy language \:
(i) A is reqular;
(i9) Ry has finite index;
(7i1) Py has finite index;
(iv) A is recognizable by a finite monoid.
Proof. Equivalences (i) < (ii) < (4ii) were proved in [9, 15]. Let us only mention
here that the recognizer constructed in (i4) = (i) is deterministic recognizer
M) = (A, X,6,a9,7) where A = X*/Ry, §(u/Rx,z) = (uzx)/Ry, ag = €/ Ry
and 7(u/Ry) = Mu).

The equivalence (iii) < (iv) follows from Theorem 1.

The fuzzy recognizer M(A) can be constructed in a way similar to the con-
struction of the minimal recognizer for a crisp language. Indeed, the set of states
is {\u | u € X*} where A\.u is a fuzzy subset of X* defined by A\u(w) = A(uw)
for any w € X*. It can be easily seen that A.u = A.v if and only if u/Ry = v/Rj.
Then transitions are defined by 6(A.u,z) = A.(uz), A = A.e is the initial state,
and 7(A.u) = A(u).

The transition monoid T(A) of a fuzzy automaton A = (A, X, u) can be
defined in two equivalent ways. Namely, let 6 4 be the relation defined on X* by

(u,0) € 0.4 & (Ya,b € A) pla,u,b) = pla,v,b).

Then 0 4 is a congruence and T'(A) = X*/0 4, see [7]. On the other hand, T'(A) =
{M(u) | w € X*} is a monoid consisting of fuzzy matrices of type A x A, with
multiplication o defined by

(M(u) o M(v)ap = \/ (M(t)ae A M(v)ep), a,b € A,
ceA
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It is generated by the set {M(z) | z € X}. In the case of deterministic fuzzy
automata, i.e., ordinary automata, the relation 6 4 becomes Myhill congruence
and T'(A) is the usual transition monoid of A.

Using the following theorem the monoid Syn()), for a fuzzy language A, can
be computed.

Theorem 3. For a fuzzy language X, T(M(X)) = Syn(\).
Proof. Follows directly from the fact Py = 0,q(y)-

It is well-known that not every monoid is a syntactic monoid of a crisp
language. This is not the case with fuzzy languages.

Theorem 4. FEvery monoid is the syntactic monoid of a fuzzy language.

Proof. Consider a monoid S and an alphabet X such that there is an epimor-
phism ¢ : X* — S. Let {L;};c; be languages in the partition determined by
ker ¢. Let {c;}icr be pairwise distinct numbers from [0,1]. The fuzzy language
A X* — [0,1] is defined by A(u) = ¢; & u € L;. It can be proved that the
mapping ¢ : Syn(\) — S defined by (u/Py)Y = u¢ is an isomorphism.

3 Varieties of fuzzy languages

Recall that a family 4 = {€(X)} of regular (crisp) languages is a variety of
languages if it is closed under Boolean operations, quotients and inverse ho-
momorphic images. These are exactly families of crisp languages definable by
varieties of monoids. We are going to describe here the corresponding families
of fuzzy languages.

For fuzzy languages A, A1, Ay over an alphabet X, complement, union and
intersection are defined respectively by

AMu) =1 - \(u)
()\1 V )\2)(11,) = )\1(’&) V )\Q(U)
()\1 A )\2)(’11,) = )\1(’(1,) A )\g(u)

The set of all fuzzy languages over the same set together with these operations
forms a De Morgan algebra.
Further, left and right quotients are defined respectively by

(AT A2) (1) = Vyex- (A2 (vu) A (v))
A2 (W) = Ve x- (Aa(uv) A Ai(v)).

Let ¢ € [0, 1] be arbitrary, then the fuzzy language c) is defined by

(eA)(u) = ¢ Alu).

Let ¢ : X* — Y™* be a homomorphism and 7 a fuzzy language over Y, then the
inverse image of T is a fuzzy language 7¢~! over X defined by

(¢~ ") (u) = 7(ug).
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Lemma 2. Let X and Y be alphabets, X\, \1, A2 be fuzzy languages over X, T is
a fuzzy language over Y, ¢ : X* — Y™ a homomorphism and ¢ € (0,1] arbitrary
constant. Then the following holds:

(a) Py= P =Py
Pxivags Paiaxg 2 Pay NPy, ;

(b) PAI—I/\27P/\2)\;1 B P>\2;

(¢c) poProdp™' C Py, where po Pro¢™t is a congruence on X* defined by
(u,v) € po Progp™t & (up,ve) € P.

As a consequence of Lemma 2 we get the following result.

Corollary 1. Complements, unions, intersections, products by constants, quo-
tients and inverse homomorphic images of reqular fuzzy languages are reqular.

For a fuzzy language A by a c-cut, ¢ € [0, 1], we mean the crisp language A,
defined by
Ae ={u e X*| Au) > c}.

A= \/ cAe.

ce0,1]

It is easy to see that

The following theorem gives a very useful connection between regular fuzzy
and crisp languages.

Theorem 5 ([15,9]). For a fuzzy language A, Px = (.cjo.1] Px.-
Moreover, a fuzzy language A is regular if and only if Tm(\) is finite and
language A\ is regular for every ¢ € [0,1].

A family F = {Z(X)} of regular fuzzy languages is a variety of fuzzy lan-
guages if it is closed under unions, intersections, complements, multiplications
by constants, quotients, inverse homomorphic images and cuts.

Let . and € be varieties of fuzzy and crisp languages, respectively, and let
us define the assignments .% — .#°¢ and € — ¢/ by

F(X)={LCX*|Le F(X)is crisp}
€7 (X) = {\ is a fuzzy language over X |
A=Vl ¢L; for some n € N,¢; € [0,1],L; € €(X)}.

Lemma 3. Let %, %, %o be varieties of fuzzy languages and let 6,61, %> be
varieties of crisp languages. Then:

(a) F€ is a variety of crisp languages;

(b) €7 is a variety of fuzzy languages;

¢) F1(X) C Fa(X) implies F{(X) C F5(X) for every X;

d) €1(X) C %2( ) implies <g1f(X) - ‘KJ(X) for every X;
) c
)

o‘*f_

(
(
(e) 7
(%fccg
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Proof. The claim (a) follows from the fact that concepts of Boolean operations,
quotients and inverse images extend the usual ones defined for crisp languages.
Proofs for (¢) and (d) are straightforward. Claims (e) and ( f) are also not difficult
to prove.

Finally, let us prove (b). Boolean closure of the family €7/ (X) follows from
the following identities

cL=(1-¢)LVL
ClLl A CQLQ = (Cl AN CQ)(Ll n LQ)

and the fact that €(X) is closed under Boolean operations. The family is obvi-
ously closed under products by constants. Considering cuts, it can be proved that
for A = /i ¢;L; it follows that Ae = U, Li, and so A\, € €(X) € €/ (X). Let
now ¢ : X* — Y* be a homomorphism and A € €7/(Y). Then A = /|, ¢;L; for
some L; € €(Y),c; € [0,1],n € N. Then A\¢p~(u) = MNuo) = V;_, ¢;Li(up) =
Vi, ci(Lip~ 1) (u). Since L;p~! € €(X), then A\p~! € €/ (X).

Let us prove now that ¢/ (X) is closed for quotients. Let A = \/[_, ¢;L; €
¢7(X) and 7 be a fuzzy language over X. Then

TN w) = Vpex-(Avu) A T(v))
= VUEX*(\/z L ¢iLi(vu) A T(v)
= V’UEX* \/z 1(eiLi(vu) A T(v)
= Vi1 Voex-(ciLi(vu) A7(v)
= ?:1 vEX* CZ(U_ Li)(u) A

)
)
)

~—

(v))

The fact that L, is regular implies that the principal right congruence Ry, has
finite index. Let A;,, A; A, , k € N, be the partition of X* determined by

PR
Ryp,. Clearly, the value of ¢;(v™"L;)(u) does not depend on the choice of v € 4;,,
it depends only on ij, j € {1,..., k}. Let us also denote t;;, = \/, 4. 7(v). Then

we can continue the previous computation as follows

=v;;1v§;1vv€,4 (ci(v™Li)(u) A 7(v))
=\ 1vf (o™ ><u>AvUeA 7(v))
=V 1v%_< ci(v™ L) (u) Aty)
= Vi Vi (e Aty (v L))

Now from v~ L; € € (X) follows that 77*\ € ¥/ (X). Closure for right quotients
can be proved similarly.

Now we can formulate the following theorem, whose proof follows directly
from Lemma 3.

Theorem 6. The mappings F — F¢ and € — €7 are mutually inverse lat-

tice isomorphisms between the lattices of all varieties of fuzzy languages and all
varieties of crisp languages.
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4 Variety theorem

Recall that a set . of finite monoids is a variety of finite monoids if it is closed
under taking submonoids, homomorphic images and finite direct products. To a
variety of crisp languages € a variety of finite monoids ’® generated by syntactic
monoids of languages from % is assigned. On the other hand, to a variety of finite
monoids . a variety ¢ of regular languages with syntactic monoids in . is
assigned. According to the famous Eilenberg’s theorem, the mappings ¢ — %*
and . — ¢ are mutually inverse lattice isomorphisms between the lattices of
all varieties of languages and all varieties of finite monoids.

Eilenberg’s theorem and Theorem 6 imply that the lattices of all varieties
of fuzzy languages and all varieties of finite monoids are isomorphic. In this
section we are going to establish mutual isomorphisms, and their connection
with isomorphisms used in Eilenberg’s theorem and Theorem 6.

For a variety of fuzzy languages .%, let .%° be the family of finite monoids
defined by

F° ={Syn(\) | A € F(X) for some X}.

It can be proved that .#* is a variety of monoids using arguments similar to the
proofs of Theorem 4 and Proposition 3.10 [1].

On the other hand, for a variety of finite monoids .7, let .7/ = {.#/(X)}
be the family of fuzzy languages defined by

(X)) = {\ is a fuzzy language over X | Syn(\) € .7}

The fact that .7 is a variety of fuzzy languages follows from Lemma 2 and the
first part of Theorem 5.

Using this terminology, according to Eilenberg’s theorem, €°¢ = ¥ and
¢ = ¢ hold. More relationships of this kind between the introduced operators
are proved in the following lemma.

Lemma 4. Let F, € and . be, respectively, a variety of fuzzy languages, va-
riety of crisp languages and variety of finite monoids. Then:

(a) F =F° and €7° = €°;
(b) FTe=7¢
(c) 7 =77;
(d) Fsc=F¢ and €55 = €7,

Proof. (a) The inclusion #° C Z° is obvious. For the opposite inclusion, it
suffices to prove that Syn(\) € .#° for every A € #(X). Indeed, by definition
of varieties of fuzzy languages, it follows that A, € #(X), and thus A, € F°(X),
for every ¢ € [0,1]. According to Theorem 5, it follows that Syn(A) is a subdirect
product of Syn(A.), ¢ € [0, 1], and so Syn(\) € .F°*.

Using Theorem 6 and the already proved equality #° = % we get €° =
¢les =¢7s.
(b) Clearly, L € .#7¢(X) if and only if L € .#f(X) is a crisp language, i.e., if
and only if Syn(L) € . for a crisp language L over an alphabet X, and this
holds if and only if L € .7¢(X).
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(¢) According to Theorem 6 and (b), we have .7/ = .#f¢f = 7/,

(d) Applying Theorem 6, (a) and Eilenberg’s theorem, we get .#5¢ = Fcfs¢ =
Fes¢ = Z¢. Similarly, using (c) and Eilenberg’s correspondence, we get ¢/ =
¢sf =€/,

The following theorem is a counterpart of Eilenberg’s theorem for varieties
of fuzzy languages.

Theorem 7. The mappings .F +— F° and . — L are mutually inverse
lattice isomorphisms between the lattices of all varieties of fuzzy languages and
all varieties of finite monoids.

Proof. Let .7, %, %5 be varieties of fuzzy languages and ., %], .% varieties
of finite monoids. It is easy to check that .#, C .% implies .%] (X) C .7 (X)
for every X, and %#;(X) C %5(X) for every X implies F; C %#5. According to
Eilenberg’s theorem .# = .#°°, and Lemma 4, we have .¥ = .7 = #fes =
#f3. Finally, using Theorem 6, Eilenberg’s theorem and Lemma 4, we get .# =
Fof = gesef = zesf = #5f what finishes the proof.

Ezample 1. Let us consider the family Hom(X) of all fuzzy languages over an
alphabet X that are homomorphisms from X* to ([0, 1], A), i.e., A € Hom(X) if
and only if A(uv) = A(u) A A(v) for any u,v € X*. The family Hom(X) is closed
under taking intersections, products by constants, cuts, but not for unions and
complements. Let .Z = {#(X)} be the smallest variety containing Hom(X).
Then #* is the variety of finite semilattices, whereas the corresponding variety
of crisp languages is #°¢ = {Z°(X)} with .#°(X) the Boolean closure of the
family of crisp languages {Y* | Y C X} for any alphabet X.

5 Conclusion and further work

Standard algebraic techniques known from algebraic theory of automata and for-
mal languages are used in studying fuzzy automata and fuzzy languages. Regular
fuzzy languages are considered in terms of recognition by finite monoids. A con-
nection with recognition by fuzzy automata is given. Varieties of fuzzy languages
are defined so that they are exactly families of regular fuzzy languages deter-
mined by varieties of finite monoids. Thus, an Eilenberg-type correspondence
between varieties of fuzzy languages, varieties of crisp languages and varieties of
finite monoids is proved. Knowing that fuzzy languages are a special kind of for-
mal power series, it remains for future research to generalize the correspondences
established here to formal power series over more general semirings.
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