
Insertion and Deletion for Involution Codes

Lila Kari and Kalpana Mahalingam

University of Western Ontario,
Department of Computer Science,

London, ON N6A5B7
lila, kalpana@csd.uwo.ca

Abstract. This paper introduces a generalization of the operation of
catenation: u[k]lv, the left-k-insertion, is the set of all words obtained by
inserting v into u in positions that are at most k letters away from the
left extremity of the word u. We define k-suffix codes using the left-k-
insertion operation and extend the concept of k-prefix and k-suffix codes
to involution k-prefix and involution k-suffix codes. An involution code
refers to any of the generalizations of the classical notion of codes in
which the identity function is replaced by an involution function. (An
involution function θ is such that θ2 equals the identity). We also extend
the notion of k-insertion closure and k-deletion closure of a language to
incorporate the notion of an involution function. Thus to an involution
map θ and a language L, we associate a set k-θ-ins(L) (k-θ-del(L)) with
the property that their k-insertion (k-deletion) into any word of L yields
words which belongs to θ(L). We study the properties of these languages.

1 Introduction

Catenation and quotient are basic operations in formal language theory. The
catenation and quotient operations were generalized to the concept of k-catenation
and k-quotient which was studied in [1]. The catenation of two words u and v is
just uv. The k-catenation of u and v is the set of all words obtained by inserting v
into u in positions that are atmost k letters away from the right extremity of the
word u. Similarly the k-quotient of u from v is the deletion of u from v resulting
in x1x2 where v = x1ux2 for some words x1 and x2 , |x2| ≤ k. When k = 0 the
0-catenation and 0-quotient are the regular catenation and quotient operation.
Similar to the generalization of catenation to k-catenation, [1] has generalized
the concept of prefix codes([6, 7]) to k-prefix codes and has discussed various
properties of such codes.

The k-catenation and the k-quotient defined in [1] were later called k-insertion
and k-deletion in [2]. In [2] the authors have discussed the properties of k-
insertion (k-deletion) closure of a given language L. Procedures of constructing
the k-insertion and k-deletion closure of a language were also given in [2].

In this paper we follow the approach from [1, 2] and extend these concepts to
incorporate the notion of an involution function replacing the identity function.
(An involution function θ is such that θ2 equals the identity). In the following

207

an involution code refers to any of the generalizations of classical notion of codes
([6, 7]) that replace the identity function with the involution function in a way
explained later (Definition 5). Involution codes were introduced in [3] in the
process of designing DNA strands with certain properties. The operation of k-
catenation in [1] allows insertion to take place close to the right extremity of
a word. In this paper we introduce a k-catenation that allows insertion to take
place at its left. In order to differentiate between the two operations we call the
former right-k-catenation and the latter left-k-catenation. We also generalize
the concept of suffix codes ([6, 7]) to k-suffix codes using the left-k-catenation.
Section 2 discusses the properties of such codes. We extend the concept of k-
prefix and k-suffix codes to involution k-prefix and involution k-suffix codes in
Section 3.

In Section 4 we define for a language L and an involution θ, the k-θ-insertion
closure of a language L denoted by k-θ-ins(L) as the language consisting of the
words with the property that their k-insertion into any word of L yields a word in
θ(L). The k-θ-deletion closure of a language L denoted by (k-θ-del(L)) is defined
as the language consisting of the words with the property that their k-deletion
from any word of θ(L) yields a word in L. We construct these languages using
the dual operation of dipolar k-deletion.

In this paper we use the following notations. By Σ we denote the finite
nonempty alphabet set and by Σ∗ the free monoid generated by Σ under the
catenation operation. Any word over Σ is a finite sequence of letters from Σ and
by 1 we denote the empty word. The length of a word u ∈ Σ∗ is the number
of letters in u and is denoted by |u|. Throughout the rest of the paper, we
concentrate on sets L ⊆ Σ+ that are codes meaning that every word in L+

can be written uniquely as a product of words in L (i.e. L+ is a free semigroup
generated by L). For the background on codes we refer the reader to [6, 7].An
involution θ : Σ 7→ Σ is a function such that θ2 = I where I is the identity
function and can be extended to a morphic involution on Σ∗ if for all u, v ∈ Σ∗,
θ(uv) = θ(u)θ(v) or an antimorphic involution if θ(uv) = θ(v)θ(u). For more on
involution codes we refer the reader to [3–5].

2 k-Suffix codes

In this section we introduce a new class of suffix codes called as the k-suffix codes
with respect to the left-k-catenation or left-k-insertion as it was called later in
[2]. The concept of k-prefix codes was introduced and studied in [1]. Most of the
results that hold for k-prefix codes also hold for k-suffix codes.The following is
a generalization of the catenation operation. The definition of right-k-insertion
(right-k-catenation) was introduced in [1] and was just called as k-catenation.
The definition of left-k-insertion (left-k-catenation) is the new concept we intro-
duce here. Throughout the rest of the paper we assume k ≥ 0 to be an integer.

Definition 1. Let u, v be the words over the alphabet Σ.

1. The right-k-insertion of v into u is defined by:
u[k]rv = {u1vu2 : u = u1u2, |u2| ≤ k}.

208

2. The left-k-insertion of v into u is defined by:
u[k]lv = {u1vu2 : u = u1u2, |u1| ≤ k}.

3. For L1, L2 ⊆ Σ∗, L1[k]αL2 =
⋃

u1∈L1,u2∈L2
u1[k]αu2 for α ∈ {l, r}.

Definition 2. Let u, v be words over the alphabet Σ.

1. The relation δk,α is defined on Σ∗ by: uδk,αv iff v ∈ u[k]αΣ∗ for α ∈ {l, r}.
From now on we will use δk,r = δk.

2. δk(u) = {v ∈ Σ∗ : uδkv}.
3. Let L ⊆ Σ∗, then δk(L) = {v ∈ Σ∗ : ∃u ∈ L such that v ∈ δk(u)}. The

language δk(L) is called the δk closure of L.
4. R ⊆ Σ∗ is a left-k-subsemigroup if R[k]lR ⊆ R.
5. L ⊆ Σ∗ is a left-k-ideal if L[k]lΣ∗ ⊆ L.

The relation δk is a reflexive and antisymmetric binary relation. The transi-
tive closure δ̄k of δk is a right compatible partial order. Remark that if k = 0, δ0

is the usual suffix order.
A nonempty subset R ⊆ Σ∗ such that u, v ∈ R implies u[k]rv ⊆ R is called a
right-k-subsemigroup. Clearly R is a subsemigroup of Σ∗.
A left-k-ideal L ⊆ Σ∗ is a nonempty subset of Σ∗ such that u ∈ L implies
u[k]rx ⊆ L for all x ∈ Σ∗. This is equivalent to L[k]rΣ∗ ⊆ L. Every left-k-ideal
is a left ideal and a right-k-subsemigroup. If L is a left-k-ideal for every k ≥ 0,
then, for all u = u1u2 ∈ L and x ∈ Σ∗, u1xu2 ∈ L.

Definition 3. If L ⊆ Σ∗, then define δ
[0]
k (L) = L , δ

[1]
k (L) = δk(L) , ... ,

δ
[n]
k (L) = δ

[1]
k (δ[n−1]

k (L)), ... , δ∗k(L) = ∪n≥0δ
[n]
k (L).

Clearly δk(L) = {v ∈ Σ∗ : ∃u ∈ L, uδ̄kv}. The language δk(L) is called the
δk closure of L.

Lemma 1. If T ⊆ Σ∗ is a left-k-ideal containing L ⊆ Σ∗ then δ∗k(L) ⊆ T .

Proof. Let T be a left k-ideal containing L. Suppose that δ∗k(L) is not contained
in T . Then there is an integer n and a word v ∈ δ

[n]
k (L) ⊆ δ∗k(L) such that

v /∈ T . Suppose n is minimal with this property, then n ≥ 1 and there exists u ∈
δ
[n−1]
k (L) such that v = u1xu2. Because of the minimality of n, then u ∈ T and,

since T is a left k-ideal, v = u1xu2 ∈ T , a contradiction. Therefore δ∗k(L) ⊆ T .

Proposition 1. If L is a nonempty language, δ∗k(L) is the minimal left k-ideal
containing L.

Proof. Let us see that δ∗k(L) is a left-k-ideal. Note that δ∗k(L)[k]rΣ∗ = δk(δ∗k(L))
= δk(

⋃
n≥0 δ

[n]
k (L)) =

⋃
n≥0 δk(δ[n]

k (L)) =
⋃

n≥1 δ
[n]
k (L) ⊆ δ∗k(L).

From Lemma 1 we have that δ∗k(L) is the minimal ideal containing L.

Note that a language L is a left k-ideal if and only if L = δ∗k(L).

Definition 4. Let S ⊆ Σ∗ be a nonempty language.

209

1. S is a k-prefix code if u ∈ S and u[k]rx ∩ S 6= ∅ then x = 1.
2. S is a k-suffix code if u ∈ S and u[k]lx ∩ S 6= ∅ then x = 1.

Remark that a k-suffix code is also an m-suffix code for m ≤ k and that suffix
codes are the 0-suffix codes. Every outfix code is a k-suffix code for all k ≥ 0.
An infix code is not in general a k-suffix code. For example, let L = ba+b over
Σ = {a, b}. Then L is an infix code, but not a k-suffix code for k ≥ 1. Indeed,
bakb = bak−1ab ∈ L and bak−1aab ∈ L with |bak−1| ≤ k, but a 6= 1.

Recall that if δ is a partial order or a quasiorder (reflexive and antisymmetric
relation), then an antichain A is a subset of Σ∗ such that uδv, u, v ∈ A implies
u = v. If L ⊆ Σ+, L 6= ∅, then L is a suffix code iff L is an antichain for the
suffix order, that is δ0. We have a generalized version of the above fact.

Proposition 2. A nonempty language L ⊆ Σ+ is a k-suffix code if and only if
L is a δk antichain.

Proof. Immediate from the definitions.

Let Σ be the alphabet set with |Σ| ≥ 2, let a ∈ Σ and Y = Σ \ {a}. Then
akY ∗ is a k-suffix code that is not an m-suffix code for all m > k. Hence if Sk(Σ)
denotes the family of the k-suffix codes over Σ, we have the infinite hierarchy:

S0(Σ) ⊃ S1(Σ) ⊃ ...Sk(Σ) ⊃

With every nonempty language L ⊂ Σ+ is associated a k-suffix code Sufk(L)
defined in the following way: Sufk(L) = {u ∈ L : v ∈ L, vδku ⇒ u = v}, (i.e.)
Sufk(L) is the set of words in L that are minimal with respect to the relation
δk or δ̄k. Since 1 /∈ L and L 6= ∅, then it is clear that Sufk(L) is a k-suffix code.

Proposition 3. Let S ⊆ Σ+.

1. If S is a k-suffix code, then δk(S) is a left k-ideal and Sufk(δk(S)) = S.
2. If L is a left k-ideal, L 6= Σ∗, then there exists a unique k-suffix code S

namely S = Sufk(L), such that L = δk(S).

A well known property of the suffix code is that it is closed under catenation.
We provide a similar result for k-suffix codes.

Proposition 4. The catenation of k-suffix codes is a k-suffix code.

Proof. Let S, R be two k-suffix codes and let α ∈ S, β ∈ R such that there
is a word in αβ[k]lv which belongs to SR. We want to show that v = 1. We
distinguish two cases:

1. The word v has been inserted into α or catenated to α. This means that
α1vα2β ∈ SR, |α1| ≤ k, α1, α2 ∈ Σ∗ and α = α1α2.

2. The word v has been inserted into β in a similar fashion.

210

Consider the second case (the other one can be proved in a similar fashion).
As αβ1vβ2 ∈ SR, it is a catenation of xy ∈ SR such that x ∈ S, y ∈ R. Then
one of the following situations occur:

1. x = αβ1vβ′2 , y = β′′2 . As |αβ1| ≤ k, we have |α| ≤ k and since S is a k-suffix
code with α ∈ S, β1vβ′2 = 1 which implies v = 1.

2. x = αβ1v1 and y = v2β2 with v = v1v2. Since |α| ≤ k and S is k-suffix
code, we have β1v1 = 1 which implies v1 = 1 and hence v = v2. Therefore
y = 1v2β2 with |1| ≤ k and since R is a k-suffix code, we have v2 = 1.

3. x = αβ′1 and y = β′′1 vβ2. As |α| ≤ k, β′1 = 1 and hence β′′1 β2 ∈ R with
|β′′1 | ≤ k and since R is a k-suffix code, v = 1.

4. x = α1 and y = α2β1vβ2. Since α1, α1α2 ∈ S with |α1| ≤ k we have α2 = 1
which implies β1vβ2 and hence v = 1.

In all cases we obtained v = 1 and therefore SR is also a k-suffix code.

3 k-Insertion for involution codes

In this section we generalize the catenation operation to include the notion of
an involution function and also generalize the class of k-prefix and k-suffix codes
to involution k-prefix(k-θ-prefix) and involution k-suffix (k-θ-suffix) codes. An
involution code refers to any of the generalizations of the classical notion of codes
that replace the identity function with the involution function as explained in
[3–5]. Note that when θ is identity the k-θ-prefix(suffix) code is nothing but
k-prefix(suffix) code.

Definition 5. Let u, v be words over the alphabet Σ and let θ be a morphic or
antimorphic involution.

1. A k-θ-prefix-code is a non empty language P ⊆ Σ+ such that u ∈ P and
θ(u)[k]rv ∩ P 6= ∅ implies v = 1.

2. A k-θ-suffix-code is a non empty language S ⊆ Σ+ such that u ∈ S and
θ(u)[k]lv ∩ S 6= ∅ implies v = 1.

3. A set L is called k-θ-bifix code iff L is both k-θ-prefix and k-θ-suffix code.

Lemma 2. Let L ⊆ Σ+.

1. For a morphic involution θ, L is k-θ-prefix (suffix) iff θ(L) is k-θ-prefix
(suffix).

2. For an antimorphic involution θ, L is k-θ-prefix (suffix) iff θ(L) is k-θ-suffix
(prefix).

3. L is k-θ-bifix iff θ(L) is k-θ-bifix.

Proof. Let θ be morphic involution and L is k-θ-prefix. Suppose there exists
θ(u) ∈ θ(L) such that θ(θ(u)) = u1u2 with |u2| ≤ k and u1vu2 ∈ θ(L) for some
v ∈ Σ∗. We need to show that v = 1. Note that u1vu2 ∈ θ(L) iff θ(u1vu2) ∈ L
iff θ(u1)θ(v)θ(u2) ∈ L which implies θ(v) = 1 since L is k-θ-prefix. Similarly we
can prove the other direction and also the other statements.

211

Remark that a k-θ-prefix(suffix)-code is also an m-θ-prefix(suffix)-code for
m ≤ k and that θ-prefix(suffix) codes are k-θ-prefix(suffix) codes when k = 0.

Proposition 5. When θ is morphic involution the class of k-θ-prefix(suffix)
codes is closed under concatenation.

Proof. We prove for k-θ-prefix-codes. Let P, Q be two k-θ-prefix codes. Let a ∈ P
and b ∈ Q such that θ(ab)[k]rv ∈ PQ. We need to show that v = 1.

We have the two following cases:

(i) θ(a1)vθ(a2)θ(b) ∈ PQ with |θ(a2)θ(b)| ≤ k and θ(a) = θ(a1a2).

(ii) θ(a)θ(b1)vθ(b2) ∈ PQ with |θ(b2)| ≤ k and θ(b) = θ(b1b2).

Consider case (i). Let xy = θ(a1)vθ(a2)θ(b) ∈ PQ such that x ∈ P and y ∈ Q.

Then

1. x = θ(a′1) and y = θ(a′′1)vθ(a2)θ(b) with b, y ∈ Q and |θ(a2)θ(b)| ≤ k. Since
y ∈ Q and Q is k-θ-prefix, we have |θ(b) ≤ k and θ(a′′1)vθ(a2) = 1.

2. x = θ(a1)v1 and y = v2θ(a2)θ(b) with b, y ∈ Q and |θ(b)| ≤ k. Since y ∈ Q
and Q is k-θ-prefix, we have v2θ(a2) = 1 which implies v = v1 and θ(a) =
θ(a1). Since x, a ∈ P and P is k-θ-prefix with |1| ≤ k, we have v1 = v = 1.

3. x = θ(a1)vθ(a′2) and y = θ(a′′2)θ(b) with y, b ∈ Q and |θ(b)| ≤ k. Since Q
is k-θ-prefix, we have θ(a′′2) = 1 and since |θ(a′2)| ≤ k with x, a1a

′
2 ∈ P , we

have v = 1.
4. x = θ(a1)vθ(a2)θ(b1) and y = θ(b2) with b, y ∈ Q and |θ(b2)| ≤ k (i.e.) we

have θ(b2), b1b2 ∈ Q which implies b1θ(θ(b2)) ∈ Q and hence b1 = 1 since
x = θ(a1)vθ(a2) and P is k-θ-prefix with |θ(a2)| ≤ k we have v = 1.

Similar proof works for case(ii). Hence PQ is k-θ-prefix. Similarly we can
show that k-θ-suffix codes are closed under concatenation when θ is morphic
involution.

Proposition 6. When θ is antimorphic involution, if L is a k-θ-bifix code, then
Ln is a k-θ-bifix code for all n ≥ 1.

Proof. We prove by induction on n. Given L is k-θ-bifix. Assume that Lm is
k-θ-bifix for some m ≥ 1. Let a = a1...am+1 ∈ Lm+1 such that ai ∈ L for all
1 ≤ i ≤ m + 1 and θ(a)[k]rv ∈ Lm+1. We need to show that v = 1. We have the
following m + 1 cases.

Case (1):
We have θ(am+1,1)vθ(am+1,2)θ(am)...θ(a1) ∈ Lm+1 such that

|θ(am+1,2)θ(am)...θ(a1)| ≤ k.
Cases (i) (2 ≤ i ≤ m) : θ(am+1)...θ(ai,1)vθ(ai,2)θ(ai−1)...θ(a1) ∈ Lm+1 with
|θ(ai,2)θ(ai−1)...θ(a1)| ≤ k for 2 ≤ i ≤ m.

212

Case (m+1): θ(am+1)θ(am)...θ(a1,1)vθ(a1,2) ∈ Lm+1 with |θ(a1,2)| ≤ k.

Consider case (i).

Let xy = θ(am+1,1)vθ(am+1,2)θ(am)...θ(a1) such that xy ∈ Lm+1 , x ∈ L
and y ∈ Lm with |θ(am+1,2)θ(am)...θ(a1)| ≤ k.

Then we have,

1. x = θ(a′m+1,1) and y = θ(a′′m+1,1)vθ(am+1,2)θ(am)...θ(a1) with
θ(am+1,1) = θ(a′m+1,1)θ(a

′′
m+1,1) which implies v = 1 since Lm is k-θ-bifix.

2. x = θ(am+1,1)v1 and y = v2θ(am+1,2)θ(am)...θ(a1) with v = v1v2 and
|θ(am)...θ(a1)| ≤ k. Since Lm is k-θ-bifix, we have v2θ(am+1,2) = 1 and
hence θ(am+1) = θ(am+1,1) and v = v1. Since L is k-θ-bifix, we have v = 1.

3. x = θ(am+1,1)vθ(a′m+1,2) and y = θ(a′′m+1,2)θ(am)...θ(a1). Since Lm is k-θ-
bifix we have θ(a′′m+1,2) = 1 and hence v = 1 since L is k-θ-bifix.

4. x = θ(am+1,1)vθ(am+1,2)θ(a′′m) and y = θ(a′m)...θ(a1). Since y = θ(a′m)...θ(a1)
which belongs to Lm, we have θ(a1...a

′
m) ∈ Lm and hence θ(θ((a1...a

′
m))a′′m ∈

Lm which implies a′′m = 1 since Lm is k-θ-bifix. Hence x = θ(am+1,1)vθ(am+1,2)
with |θ(am+1,2)| ≤ k and since L is k-θ-bifix we have v = 1.

The other cases can be proved in a similar fashion and hence Lm+1 is k-θ-
prefix. We can also show that Lm+1 is k-θ-suffix similarly.

Lemma 3. Let θ be a morphic involution and let L1 and L2 be non empty
languages over Σ+ such that Li ∩ θ(Li) 6= ∅ for i = 1, 2. Then the following are
true.

1. If L1L2 is k-θ-prefix code, then L2 is a k-θ-prefix code.
2. If L1L2 is k-θ-suffix code, then L1 is a k-suffix code.

Proof. Let L1L2 be k-θ-prefix code. Let u ∈ L2 such that u = u1u2 and
θ(u1)vθ(u2) ∈ L2 with |θ(u2)| ≤ k. We need to show that v = 1. Choose
x ∈ L1 such that x ∈ L1∩θ(L1). Then xθ(u1)vθ(u2) ∈ L1L2 with xθ(u1)θ(u2) ∈
θ(L1L2). Since L1L2 is k-θ-prefix, we have v = 1. Hence L2 is k-θ-prefix code.
Similarly we can show that L1 is k-θ-suffix codes, when L1L2 is a k-θ-suffix code.

Corollary 1. Let θ be a morphic involution and let Li, i = 1, 2, ..., m be non
empty languages over Σ such that Li ∩ θ(Li) 6= ∅ for all i = 1, 2, ..., m. Then the
following are true.

1. If L1L2...Lm is k-θ-prefix code, then L2L3..Lm, L3..Lm,..., Lm−1Lm and
Lm are k-θ-prefix codes.

2. If L1L2...Lm is k-θ-suffix code, then L1L2..Lm−1, L1..Lm−2,..., L1L2 and
L1 are k-θ-suffix codes.

Proposition 7. Let L ⊆ Σ+ be such that L ∩ θ(L) 6= ∅.

1. If Lm is k-θ-prefix for m ≥ 1, then L is k-θ-prefix.

213

2. If Lm is k-θ-suffix for m ≥ 1, then L is k-θ-suffix.
3. If Lm is k-θ-bifix for m ≥ 1, then L is k-θ-bifix.

Proof. Assume that Lm is k-θ-prefix for some m ≥ 1. Suppose there exists a
u ∈ L such that θ(u)[k]rv ∩ L 6= ∅ for some v ∈ Σ∗. Then we need to show that
v = 1. The case when θ is a morphic involution is a special case of proposition
1 when Li = L for all i. When θ is antimorphism, let u = u1u2 then θ(u) =
θ(u2)θ(u1) and θ(u2)vθ(u1) ∈ L with |θ(u1)| ≤ k. Let z1, z2, ..., zm−1 ∈ L∩ θ(L)
then z1...zm−1θ(u2)vθ(u1) ∈ Lm which implies v = 1 since Lm is k-θ-prefix.
Similar proof works when Lm is k-θ-suffix.

4 k-Involution insertion and deletion of languages

Let L ⊆ Σ+. To the language L, a set k-ins(L) can be associated consisting of
all the words with the following property: their k-insertion into any word of L
yields a word belonging to L [2]. Formally k-ins(L) was defined by :
k-ins(L) = {x ∈ Σ∗ : ∀u ∈ L, u = u1u2, |u2| ≤ k =⇒ u1xu2 ∈ L}. In a similar
fashion, for a moprhic or antimorphic involution θ, we associate two sets left-k-
θ-ins(L) and right-k-θ-ins(L) consisting of all words with the following property:
their k-insertion into any word of L yields a word belonging to θ(L). Formally
right-k-θ-ins(L) and left-k-θ-ins(L) are defined by:

1. right-k-θ-ins(L) = {x ∈ Σ∗ : ∀u ∈ L, u = u1u2, |u2| ≤ k =⇒ u1xu2 ∈ θ(L)}.
2. left-k-θ-ins(L) = {x ∈ Σ∗ : ∀u ∈ L, u = u1u2, |u1| ≤ k =⇒ u1xu2 ∈ θ(L)}.

Note that throughout the rest of this section we use ?-k-θ-ins(L), where ?
either denotes left or right.

Lemma 4. For a language L ⊆ Σ+ we have :

1. L is k-θ-prefix code iff right-k-θ-ins(L) = {1}.
2. L is k-θ-suffix code iff left-k-θ-ins(L) = {1}.

Proposition 8. If L is a commutative language, then ?-k-θ-ins(L) is also a
commutative language.

Proof. It is sufficient to show that xuvy ∈ ?-k-θ-ins(L) implies xvuy ∈ ?-k-
θ-ins(L). If w ∈ L, such that w = w1w2, |w2| ≤ k, then w1xuvyw2 ∈ θ(L),
hence w1xvuyw2 ∈ θ(L) (Note that L is commutative iff θ(L) is commutative.).
Therefore xvuy ∈ k-θ-ins(L).

Definition 6. For u, v words over the alphabet set Σ, the right and the left
dipolar k-deletion u ­k v is defined respectively by:
u ­k

r v = {x ∈ Σ∗ : u = v1xv2, v = v1v2, |v2| ≤ k} and
u ­k

l v = {x ∈ Σ∗ : u = v1xv2, v = v1v2, |v1| ≤ k}.

214

In [1], the operation u ­k
r v has been introduced under the name of k-

deletion and was later called as dipolar k-deletion in [2]. In other words, the
right(left) dipolar-k-deletion erases from u a prefix(suffix) v1 of any length and
a suffix(prefix) v2 of length ≤ k whose catenation v1v2 (v2v1) equals v. The
operation can be extended to languages in the natural fashion. If L1 and L2 are
languages over the alphabet Σ, then the ?-dipolar k-deletion of L2 into L1 is the
language
L1 ­k

? L2 =
⋃

u∈L1,v∈L2
u ­k

? v, where ? =left or right.
Now we construct the set ?-k-θ-ins(L) using the ?-dipolar k-deletion.

Proposition 9. ?-k-θ-ins(L) = ((θ(L))c ­k
? L)c.

Proof. Take x ∈ right-k-θ-ins(L). Suppose, x ∈ ((θ(L))c ­k
? L) then there exists

u1xu2 ∈ (θ(L))c, u1u2 ∈ L, |u2| ≤ k such that x ∈ u1xu2 ­k
r u1u2 which is a

contradiction as x ∈ right-k-θ-ins(L) and u1u2 ∈ L, |u2| ≤ k, but the right-k-θ-
insertion of x into u1u2 belongs to (θ(L))c. Conversely, let x ∈ ((θ(L))c ­k

r L)c.
If x /∈ right-k-θ-ins(L), then there exists u1u2 ∈ L, |u2| ≤ k such that u1xu2 /∈
θ(L) which implies u1xu2 ∈ (θ(L))c and hence x ∈ ((θ(L))c ­k

r L) which is a
contradiction.

Corollary 2. If L is regular, then ?-k-θ-ins(L) is regular.

Proof. It has been proven in [1] that if a language L is regular, then L ­k
? R

is regular. Since L is regular, θ(L) is regular and hence (θ(L))c is regular which
implies ((θ(L))c ­k

? L) is regular and hence ((θ(L))c ­k
? L)c is regular.

Given two words u, v ∈ Σ∗, the insertion of v in to u is defined as u ←− v =
{u1vu2 : u = u1u2}. The k-insertion was introduced in [1] under the name of
k-catenation. The operation of k-insertion restricts the generality of insertion by
allowing words to be inserted only in at most k + 1 positions. The left and the
right k-insertions of v into u are respectively the right and the left k-catenation
of v in to u
u ←−k

r v = {u1vu2 : u = u1u2, |u2| ≤ k} = u[k]lv
u ←−k

l v = {u1vu2 : u = u1u2, |u1| ≤ k} = u[k]rv.
The left and the right insertion of a language L2 in to L1 can be defined in a
natural fashion.

Definition 7. A language L is ?-k-θ-ins-closed iff L ⊆ ?-k-θ-ins(L).

Proposition 10. L is ?-k-θ-ins-closed iff L ←−k
? L ⊆ θ(L).

Proof. Let L be right-k-θ-ins-closed. Take x ∈ L and let u = u1u2 ∈ L such
that |u2| ≤ k. Then as x ∈ L ⊆ right-k-θ-ins(L), u1xu2 ∈ θ(L) which implies
L ←−k

r L ⊆ θ(L). Conversely, let L ←−k
r L ⊆ θ(L) and let x ∈ L. To show that

x ∈ right-k-θ-ins(L). Let u1u2 ∈ L, |u2| ≤ k. Then L ←−k
r L ⊆ θ(L) implies

that u1xu2 ∈ θ(L) which implies x ∈ right-k-θ-ins(L).

Lemma 5. For a language L ⊆ Σ+ we have :

215

1. When θ is morphic involution, L is ?-k-θ-ins-closed iff θ(L) is ?-k-θ-ins-
closed.

2. When θ is antimorphic involution, L is left(right)-k-θ-ins-closed iff θ(L) is
right(left)-k-θ-ins-closed.

3. For k = 0, if L is ?-k-θ-ins-closed then Ln, n ≥ 1 is ?-k-θ-ins-closed.
4. L is ?-k-θ-ins-closed and Li(L ←−k

? Ln)Lj ⊆ θ(Ln) for all i, j ≥ 0 such that
i + j = n− 1, n ≥ 1 iff Ln is ?-k-θ-ins-closed for all n ≥ 1.

Given two words u, v ∈ Σ∗, the deletion of v in to u is defined as u −→
v = {u1u2 : u = u1vu2}. The notion of k-deletion was introduced in [1] under
the name of k-quotient. The operation of k-deletion restricts the generality of
deletion by allowing words to be deleted only in at most k + 1 positions. The
right and left k-deletions of v from u is defined respectively by :

u −→k
r v = {u1u2 : u = u1vu2, |u2| ≤ k}

u −→k
l v = {u1u2 : u = u1vu2, |u1| ≤ k}.

If k = 0, we get the right and the left quotient respectively. The left and the
right deletion of a language L2 in to L1 can be defined in a natural fashion.
The right-k-deletion was called as k-deletion in [1]. We extend these concepts
to incorporate the notion of an involution function and hence we define left-k-
θ-deletion and right-k-θ-deletion of a given language.

Let L ⊆ Σ∗ and let right-k-Sub(L) = {u ∈ Σ∗ : xuy ∈ L, |y| ≤ k} and left-
k-Sub(L) = {u ∈ Σ∗ : xuy ∈ L, |x| ≤ k}. The elements of left(right)-k-Sub(L)
are called the left(right)-k-subwords. To the language L, one can associate a lan-
guage ?-k-θ-del(L) consisting of all the words with the following property: x is a
?-k-subword of atleast one of the word of θ(L), and the ?-k-deletion of x from any
word of θ(L) containing x as a ?-k-subword yields word belonging to L. Formally,
right-k-θ-del(L) = {x ∈ right-k-Sub(θ(L)): ∀u ∈ θ(L), u = u1xu2, |u2| ≤ k, u1u2 ∈
L}
left-k-θ-del(L) = {x ∈ left-k-Sub(θ(L)): ∀u ∈ θ(L), u = u1xu2, |u1| ≤ k, u1u2 ∈
L}.
Proposition 11. If L is a commutative language, then ?-k-θ-del(L) is also com-
mutative.

Proof. It is sufficient to show that xuvy ∈ ?-k-θ-del(L) implies xvuy ∈ ?-k-θ-
del(L). If w ∈ θ(L), w = w1xuvyw2 then w1w2 ∈ L, but w1xvuyw2 ∈ θ(L) since
L is commutative which implies xvuy ∈ ?-k-θ-del(L).

Proposition 12. ?-k-θ-del(L) = (θ(L) ­k
? Lc)c ∩ ?-k-Sub(θ(L)).

Proof. Take x ∈ ?-k-θ-del(L). Then x ∈ ?-k-Sub(θ(L)) which implies for every
u ∈ θ(L), u = u1xu2, u1u2 ∈ L. Suppose , x ∈ (θ(L) ­k

? Lc), then there
exists u ∈ θ(L) such that u = u1xu2 with u1u2 ∈ Lc which is a contradiction.
Conversely let x ∈ ?-k-Sub(θ(L)) ∩ (θ(L) ­k

? Lc)c. Suppose x /∈ ?-k-θ-del(L)
then there exists u ∈ θ(L) such that u = u1xu2 ∈ θ(L) and u1u2 /∈ L which
implies u1u2 ∈ Lc and hence x ∈ θ(L) ­k

? Lc which is a contradiction. Therefore
x ∈ ?-k-θ-del(L).

216

Definition 8. A language L is called ?-k-θ-del closed if v ∈ L, u1vu2 ∈ θ(L)
then u1u2 ∈ L. (Note that when ? = =left, then |u2| ≤ k and when ? =right,
|u1| ≤ k).

Lemma 6. Let L ⊂ Σ∗.

1. When θ is morphic involution, then L is ?-k-θ-del-closed iff θ(L) is ?-k-θ-
del-closed.

2. When θ is antimorphic involution, then L is left(right)-k-θ-del-closed iff θ(L)
is right(left)-k-θ-del-closed.

Proposition 13. Let L be such that L is ?-k-θ-ins-closed. Then L is ?-k-θ-del-
closed iff L = (θ(L) −→k

? L).

Proof. Let L be ?-k-θ-del-closed. Let x ∈ (θ(L) −→k
? L). To show that u ∈ L.

Since u ∈ (θ(L) −→k
? L), u = u1u2 such that u1xu2 ∈ θ(L) with x ∈ L. Since

L is ?-k-θ-del-closed, u1u2 ∈ L which implies (θ(L) −→k
? L) ⊆ L. To prove the

other inclusion, let u ∈ L and since L is ?-k-θ-ins-closed, u ∈ L ⊆ ?-k-θ-ins(L)
and u = u1u2 such that u1xu2 ∈ θ(L) which implies u ∈ θ(L) −→k

? L). Hence
L ⊆ θ(L) −→k

? L). Therefore L = θ(L) −→k
? L). Conversely, let L = θ(L) −→k

?

L). Let v ∈ L with u1vu2 ∈ θ(L), then u1u2 ∈ θ(L) −→k
? L) = L which implies

u1u2 ∈ L and hence L is ?-k-θ-del-closed.

5 Conclusion

In this paper we have introduced a generalization of the catenation operation
and hence have defined the concept of k-suffix code and k-prefix code. We have
extended the concept of these codes to involution k-suffix and involution k-prefix
codes and have investigated the theoretical properties of these codes in Section
3. We have also extended the notion of k-insertion closure and k-deletion closure
of a language to incorporate the notion of an involution function. In Section 4 we
have constructed these languages using the dual operation of dipolar k-deletion.
As future work, we would like to investigate the algebraic characterizations of
these involution codes through their syntactic monoid. The role of such codes in
the design of DNA strands with certain properties (see [3–5]) also needs to be
further investigated.

Acknowledgment
Research supported by NSERC and Canada Research Chair grants for Lila Kari.

References

1. L.Kari and G.Thierrin, K-catenation and applications k-prefix codes, Journal of
Information and Optimization Sciences, Vol 16-2 (1995), 263-276.

2. L.Kari and G.Thierrin, K-Insertion and K-Deletion Closure of Languages, Soochow
Journal of Mathematics, Vol 21-4 (1995), 479-495.

217

3. S.Hussini, L.Kari and S.Konstantinidis, Coding Properties of DNA Languages, The-
oretical Computer Science 290 (2003), 1557-1579.

4. L.Kari and K.Mahalingam, More on Involution Codes, preprint.
5. N.Jonoska and K.Mahalingam, Involution Codes: With Application to DNA Coded

Languages, Natural Computing, Vol 4-2(2005), 141-162.
6. H.J.Shyr, Free Monoids and Languages, Hon-Min Book Company, Taichung, Tai-

wan, (1991).
7. J. Berstel, D. Perrin, Theory of Codes, Academis Press, Inc. Orlando Florida, 1985.

218

