
Descriptional and Computational Aspects of

Generating and Accepting Hybrid Networks of

Evolutionary Processors

Carlos Mart́ın-Vide1 Victor Mitrana1,2

1Research Group in Mathematical Linguistics, Rovira i Virgili University
Pça. Imperial Tàrraco 1, 43005 Tarragona, Spain

{cmv,vmi}@correu.urv.es
2Faculty of Mathematics and Computer Science, University of Bucharest

Str. Academiei 14, 010014, Bucharest, Romania.

Abstract

The goal of this paper is to survey in a systematic and uniform way the main results regard-
ing some descriptional and computational aspects of hybrid networks of evolutionary processors
viewed both as generating and accepting devices, as well as solving problems with these mech-
anisms. We start by surveying some results regarding the size complexity of generating hybrid
networks of evolutionary processors. Then, we define a computational complexity class of ac-
cepting hybrid networks of evolutionary processors and prove that this class equals the classical
class NP. In another section, we present a few NP-complete problems and recall how they can
be solved in linear time by accepting networks of evolutionary processors with linearly bounded
resources (nodes, rules, symbols). We also recall a possible implementation of a solution for the
3-CNF-SAT using WWW. Finally we discuss some possible directions for further research.

1 Introduction

The origin of networks of evolutionary processors (NEPs for short) is twofold. In [7] we consider a
computing model inspired by the evolution of cell populations, which might model some properties
of evolving cell communities at the syntactical level. Cells are represented by words which encode
their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a
collection of words, where each word represents one cell. Cells belong to species and their community
evolves according to mutations and division which are defined by operations on words. Only those
cells are accepted as surviving (correct) ones which are represented by a word in a given set of words,
called the genotype space of the species. This feature parallels with the natural process of evolution.

On the other hand, a well-known architecture for parallel and distributed symbolic processing,
related to the Connection Machine [17] as well as the Logic Flow paradigm [10], consists of several
processors, each of them being placed in a node of a virtual complete graph, which are able to
handle data associated with the respective node. Each node processor acts on the local data in
accordance with some predefined rules, and then local data becomes a mobile agent which can navigate
in the network following a given protocol. Only that data which can pass a filtering process can be
communicated among the processors. This filtering process may require to satisfy some conditions

219

imposed by the sending processor, by the receiving processor or by both of them. All the nodes
send simultaneously their data and the receiving nodes handle also simultaneously all the arriving
messages, according to some strategies, see, e.g., [11, 17].

Starting from the premise that data can be given in the form of words, [6] introduces a concept
called network of parallel language processors in the aim of investigating this concept in terms of
formal grammars and languages. Networks of language processors are closely related to grammar
systems, more specifically to parallel communicating grammar systems [5]. The main idea is that
one can place a language generating device (grammar, Lindenmayer system, etc.) in any node of an
underlying graph which rewrites the words existing in the node, then the words are communicated to
the other nodes. Words can be successfully communicated if they pass some output and input filter.
More recently, [8] introduces networks whose nodes are (standard) Watson-Crick D0L systems which
communicate each other either the correct words or the corrected words.

In [1], we modify this concept in the following way inspired from cell biology. Each processor
placed in a node is a very simple processor, an evolutionary processor. By an evolutionary processor
we mean a processor which is able to perform very simple operations, namely point mutations in a
DNA sequence (insertion, deletion or substitution of a pair of nucleotides). More generally, each node
may be viewed as a cell having genetic information encoded in DNA sequences which may evolve
by local evolutionary events, that is point mutations. Each node is specialized just for one of these
evolutionary operations. Furthermore, the data in each node is organized in the form of multisets
of words (each word appears in an arbitrarily large number of copies), and all copies are processed
in parallel such that all the possible events that can take place do actually take place. Obviously,
the computational process described here is not exactly an evolutionary process in the Darwinian
sense. But the rewriting operations we have considered might be interpreted as mutations and the
filtering process might be viewed as a selection process. Actually, many fitness functions on words
may also be defined by random-context conditions. Recombination is missing but it was asserted
that evolutionary and functional relationships between genes can be captured by taking only local
mutations into consideration [22]. Consequently, hybrid networks of evolutionary processors might be
viewed as bio-inspired computing models.

Our mechanisms introduced in [1] are further considered in [2] as language generating devices and
their computational power is investigated. Furthermore, filters, based on the membership and random-
context conditions, used in [6] are generalized in some versions defined in [1, 2, 20]. More precisely, the
new filters are based on different types of random-context conditions. In the aforementioned papers,
the filters of all nodes are defined by the same random-context condition type. Moreover, the rules
are applied in the same manner in all the nodes. These restrictions are discarded in [20] and [19]. By
this reason, these networks were called hybrid.

In [19], we consider time complexity classes defined on accepting hybrid networks of evolutionary
processors (AHNEP) similarly to the classical time complexity classes defined on the standard com-
puting model of Turing machine. By definition, AHNEPs are deterministic. We prove that NP equals
the class of languages accepted by AHNEPs in polynomial time.

In a series of papers, we present linear time solutions to some NP-complete problems using gen-
erating hybrid networks of evolutionary processors (GHNEP). Such solutions are presented for the
Bounded Post Correspondence Problem in [1], for the “3-colorability problem” in [2] (with simplified
networks), and for the Common Algorithmic Problem in [20].

In [18] we propose two linear time solutions to two much celebrated NP-complete problems, namely
the 3CNF-SAT and the HPP, based on AHNEPs having all resources (size, number of rules and
symbols) linearly bounded by the size of the given instance. This work presents for the first time such
solutions based on AHNEPs and not GHNEPs, and more important, by the definition of AHNEPs, one
can evaluate the descriptional (number of nodes, rules, symbols) and computational (time) complexity
of these AHNEPs with respect to their input word which is actually the given instance of the problem.

220

The reader can easily extend this approach to the solutions based on GHNEPs proposed in the
aforementioned works.

We want to stress from the very beginning that we were not concerned with a possible biological
implementation, though a matter of great importance. However, in the last section of [18] we discuss
an (im)possible and a bit funny implementation, not of biological inspiration as one may expected
according to the above considerations, but using WWW.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is a finite and nonempty
set of symbols. The cardinality of a finite set A is written card(A). Any sequence of symbols from an
alphabet V is called word over V . The set of all words over V is denoted by V ∗ and the empty word
is denoted by ε. The length of a word x is denoted by |x| while the number of occurrences of a letter
a in a word x is denoted by |x|a. Furthermore, for each nonempty word x we denote by alph(x) the
minimal alphabet W such that x ∈ W ∗. We denote by wR the mirror image of the word w and by
LR the language of mirror images of all words in L. A morphism from (V ∪ U)∗ to V ∗ which erases
all symbols from U and leaves unchanged all symbols from V is called projection and it is denoted by
prV .

We say that a rule a → b, with a, b ∈ V ∪{ε} is a substitution rule if both a and b are not ε; it is a
deletion rule if a 6= ε and b = ε; it is an insertion rule if a = ε and b 6= ε. The set of all substitution,
deletion, and insertion rules over an alphabet V is denoted by SubV , DelV , and InsV , respectively.

Given a rule σ as above and a word w ∈ V ∗, we define the following actions of σ on w:

• If σ ≡ a → b ∈ SubV , then σ∗(w) =
{ {ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

• If σ ≡ a → ε ∈ DelV , then σ∗(w) =
{ {uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{ {u : w = ua},
{w}, otherwise σl(w) =

{ {v : w = av},
{w}, otherwise

• If σ ≡ ε → a ∈ InsV , then

σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.

α ∈ {∗, l, r} expresses the way of applying a deletion or insertion rule to a word, namely at any
position (α = ∗), in the left (α = l), or in the right (α = r) end of the word, respectively. For every
rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the α-action of σ on L by σα(L) =

⋃
w∈L σα(w).

Given a finite set of rules M , we define the α-action of M on the word w and the language L by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined above as evolutionary
operations since they may be viewed as linguistic formulations of local DNA mutations.

For two disjoint subsets P and F of an alphabet V and a word over V , we define the predicates

ϕ(1)(w;P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(2)(w;P, F) ≡ alph(w) ⊆ P
ϕ(3)(w;P, F) ≡ P ⊆ alph(w) ∧ F 6⊆ alph(w)
ϕ(4)(w;P, F) ≡ alph(w) ∩ P 6= ∅ ∧ F ∩ alph(w) = ∅.

221

The construction of these predicates is based on random-context conditions defined by the two sets
P (permitting contexts/symbols) and F (forbidding contexts/symbols). Informally, the first condition
requires that all permitting symbols are and no forbidding symbol is present in w, the second one
requires that all symbols of w are permitting ones, while the last two conditions are weaker variants
of the first one such that some forbidding symbols may appear in w but not all of them, and at least
one permitting symbol appears in w, respectively.

For every language L ⊆ V ∗ and β ∈ {(1), (2), (3), (4)}, we define:
ϕβ(L,P, F) = {w ∈ L | ϕβ(w;P, F)}.

An evolutionary processor over V is a tuple (M,PI, FI, PO, FO), where:

• Either (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M represents the set of evolu-
tionary rules of the processor. As one can see, a processor is “specialized” in one evolutionary
operation only.

• PI, FI ⊆ V are the input permitting/forbidding contexts of the processor, while PO,FO ⊆ V
are the output permitting/forbidding contexts of the processor.

We denote the set of evolutionary processors over V by EPV .
A generating hybrid network of evolutionary processors (a GHNEP, for short) is a 7-tuple Γ =

(V, G,N , C0, α, β, xO), where the following conditions hold:

• V is an alphabet.

• G = (XG, EG) is an undirected graph with the set of vertices XG and the set of edges EG, each
edge is given in the form of a set of two nodes. G is called the underlying graph of the network.

• N : XG −→ EPV is a mapping which associates with each node x ∈ XG the evolutionary
processor N (x) = (Mx, P Ix, F Ix, POx, FOx).

• C0 : XG −→ V ∗ is a mapping which identifies the initial configuration of the network. It
associates a finite set of words with each node of the graph G.

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on the words occurring
in that node.

• β : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters of a node. More
precisely, for every node, x ∈ XG, we define the following filters: the input filter is given as
ρx(·) = ϕβ(x)(·; PIx, F Ix), and the output filter is defined as τx(·) = ϕβ(x)(·; POx, FOx). That
is, ρx(w) (resp. τx) indicates whether or not the word w can pass the input (resp. output) filter
of x. More generally, ρx(L) (resp. τx(L)) is the set of words of L that can pass the input (resp.
output) filter of x.

• xO ∈ XG is the output node of the GHNEP.

An accepting hybrid network of evolutionary processors (AHNEP for short) is a 7-tuple Γ =
(V, U,G,N, α, β, xI , xO), where:

• V and U are the input and network alphabet, respectively, V ⊆ U .

• G, N , α, β, xO are defined as above, and xI is the input node of the AHNEP.

In the above definitions, we say that card(XG) is the size of Γ, denoted by size(Γ). If α(x) = α(y)
and β(x) = β(y) for any pair of nodes x, y ∈ XG, then the network is said to be homogeneous. If
the set of rules at every node consists of at most one rule, then the network is said to be elementary.

222

Further, a network having all filters empty sets is said to be free. In the theory of networks some types
of underlying graphs are common, e.g., rings, stars, grids, etc. In some of the aforementioned papers
([2, 9, 20, 19]), there were investigated networks of evolutionary processors having underlying graphs
of these special forms, but with a special attention to complete graphs. Thus a GHNEP (AHNEP)
is said to be a star, ring, grid, or complete GHNEP (AHNEP) if its underlying graph is a star, ring,
grid, or complete graph, respectively. The star, ring, and complete graph with n nodes is denoted by
Sn, Rn, and Kn, respectively. Most of the results presented in the sequel concern complete GHNEPs
(AHNEPs).

A configuration of a GHNEP (AHNEP) Γ as above is a mapping C : XG −→ 2V ∗ which associates
a set of words with every node of the graph. A configuration may be understood as the sets of words
which are present in any node at a given moment. A configuration can change either by an evolutionary
step or by a communication step. When changing by an evolutionary step, each component C(x) of
the configuration C is changed in accordance with the set of evolutionary rules Mx associated with
the node x and the way of applying these rules α(x). Formally, we say that the configuration C ′ is
obtained in one evolutionary step from the configuration C, written as C =⇒ C ′, iff

C ′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends one copy of each word
it has, which is able to pass the output filter of x, to all the node processors connected to x and
receives all the words sent by any node processor connected with x providing that they can pass its
input filter. Formally, we say that the configuration C ′ is obtained in one communication step from
configuration C, written as C ` C ′, iff

C ′(x) = (C(x)− τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Note that words which leave a node are eliminated from that node. If they cannot pass the input
filter of any node, they are lost.

Let Γ be a GHNEP, a computation in Γ is a sequence of configurations C0, C1, C2, . . ., where C0 is
the initial configuration of Γ, C2i =⇒ C2i+1 and C2i+1 ` C2i+2, for all i ≥ 0. Note that the two steps,
evolutionary and communication, are synchronized and they happen alternatively one after another.
By the previous definitions, each configuration Ci is uniquely determined by the configuration Ci−1.
If the sequence is finite, we have a finite computation. The result of any finite or infinite computation
is a language which is collected in the output node of the network. For any computation C0, C1, . . .,
all words existing in the output node at some step belong to the language generated by the network.
Formally, the language generated by Γ is Lgen(Γ) =

⋃
s≥0 Cs(xO).

Let Γ be an AHNEP, the computation of Γ on the input word w ∈ V ∗ is a sequence of config-
urations C

(w)
0 , C

(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial configuration of Γ defined by C

(w)
0 (xI) = w

and C
(w)
0 (x) = ∅ for all x ∈ XG, x 6= xI , C

(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 ` C

(w)
2i+2, for all i ≥ 0. Again,

the two steps, evolutionary and communication, are synchronized and they happen alternatively one
after another. By the previous definitions, each configuration C

(w)
i is uniquely determined by the

configuration C
(w)
i−1. In other terms, each computation in an AHNEP is deterministic. A computation

as above immediately halts if one of the following two conditions holds:
(i) There exists a configuration in which the set of words existing in the output node xO is non-

empty. In this case, the computation is said to be an accepting computation.
(ii) There exist two consecutive identical configurations.

In the aforementioned cases the computation is said to be finite. The language accepted by Γ is
Lacc(Γ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

223

3 Descriptional Complexity: Size of Complete GHNEPs

Let L be a language generated by a complete GHNEP. We define

size(L) = min{size(Γ) | L = Lgen(Γ)}.

For a regular language L we denote by state(L) the minimal number of states of a finite automaton
recognizing L. The first natural problem concerns the existence of a constant upper bound for the
size of any language generated by a GHNEP. The next theorem shows that this is not the case.

Theorem 1 [3]. The measure size is connected, that is for any n ≥ 1 there exists a language Ln such
that size(Ln) = n.

Note that the languages Ln used in the above proof are defined over alphabets depending on n.
Does the statement hold anymore for alphabets of a fixed size? If yes, which is this size?

The results presented in the first two lines of the next diagram are rather surprising since the size
of the GHNEP generating a regular language L, hence its underlying structure, does not depend on
state(L). In other words, this structure is common to all regular languages over the same alphabet,
no matter the state complexity of the automata recognizing them. Furthermore, all words of the same
length are generated simultaneously.

In the next diagram, L is a regular language, Γ is a GHNEP generating L, symb(Γ) delivers the
number of symbols used by Γ, and rule(Γ) denotes the number of all rules in the nodes of Γ. The last
column indicates the work where the result was proved.

card(alph(L) state(L) size(Γ) symb(Γ) rule(Γ) Work
n m 2n + 3 2n + 2nm + m ≤ 2nm + 2n + 1 [20]
n m n + 5 3n + (n + 1)m ≤ 3n + (2n + 1)m [3]
n m 2m + 2 2m + n + m2 ≤ 2m2 + (n + 1)m [21]

Table 1: Size complexity of complete GHNEPs generating regular languages

A natural problem arises: Given a regular language L, is size(L) algorithmically computable? We
are not able to give a complete answer to this problem. However, we can state:

Theorem 2 [3]. Given a regular language L one can algorithmically decide whether or not size(L) =
1.

However, a complete answer to the question: “Is the size of a regular language computable?”
remains an open problem. The same problem is completely solved for context-free languages by
showing that it is not decidable for context-free languages.

Theorem 3 [3]. One cannot algorithmically decide whether the size of a context-free language equals
1.

As an immediate consequence, we state

Corollary 1 [3]. The measure size is not computable for the family of context-free languages.

Since each linear grammar can be transformed into an equivalent linear grammar with rules of the
form A → aB, A → Ba, A → ε only, we can state:

224

Theorem 4 [3]. Any regular and linear language L over an alphabet with n symbols can be generated
by a complete/star/ring GHNEP whose size depends linearly on n, only.

Another natural problem arises here: Is it possible to give a similar characterization of other
families of languages in the Chomsky hierarchy? Surprisingly enough, the answer is affirmative even
for the class of recursively enumerable languages.

Theorem 5 [9]. Any recursively enumerable language L over an alphabet V can be generated by a
complete or star GHNEP of size 28 + 3 · card(V). Hence, size(L) ≤ 28 + 3 · card(alph(L)).

This last result suggests the possibility of constructing a “universal” GHNEP with a fixed underlying
structure for all recursively enumerable languages over a given alphabet. Furthermore, a similar result
based on the proof of Theorem 5 from [9] can be proved for context-free languages too.

The minimal size of a complete or star GHNEP generating an arbitrary recursively enumerable
language over a fixed alphabet remains to be further investigated. However, we can state:

Theorem 6 [9]. 1. The language generated by any GHNEP of size one is regular.
2. There exist non-context-free languages which can be generated by complete, homogeneous GHNEPs
of size 2.
3. There exist non-recursive languages which can be generated by complete or star GHNEPs of size
28.
4. The family of languages generated by complete or star GHNEPs having no deletion node coincides
with the family of context-sensitive languages.

The smallest size of a non-context-free language is 2. Which is the smallest size of a non-context-
sensitive language? The same question for non-recursive language remains open.

The next result, proved in [9], seems to be interesting. It raises a new series of open problems:
which is the smallest size of an elementary GHNEP generating a non-recursive or non-context-free
language? Is still the size of such a GHNEP generating a regular or recursively enumerable language
linearly bounded by the alphabet size?

Theorem 7 [9]. Any recursively enumerable language can be generated by an elementary, complete
or star GHNEP.

4 Computational Complexity of Complete AHNEPs

The reader is referred to [13, 14] for the classical time and space complexity classes defined on the
standard computing model of Turing machine.

We define some computational complexity measures by using AHNEP as the computing model.
To this aim we consider a AHNEP Γ and the language L accepted by Γ. The time complexity of the
accepting computation C

(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of Γ on x ∈ L is denoted by TimeΓ(x) and equals

m. The time complexity of Γ is the partial function from N to N,
TimeΓ(n) = max{TimeΓ(x) | x ∈ L(Γ), |x| = n}.

For a function f : N −→ N we define
TimeAHNEP (f(n)) = {L | there exists an AHNEP Γ and n0 such that

L = L(Γ) and ∀n ≥ n0(TimeΓ(n) ≤ f(n))}
Moreover, we write PTimeAHNEP =

⋃
k≥0 TimeAHNEP (nk).

Now we prove a result which establishes a strong connection between the complexity classes defined
on Turing machines and those defined on AHNEPs.

225

Proposition 1 [19]. For any nondeterministic Turing machine, M , recognizing a language L there
exists an AHNEP, Γ, accepting the same language L. Moreover, if M works within time f(n) then
TimeΓ(n) ∈ O(f(n)).

It is worth mentioning that the underlying graph in the proof from [19] of this proposition is the
complete graph Kp, with p = 15+7(card(V2)−1)+card(Q)+2(card(V2)−1)2+2card(Q)(card(V2)−1).
That is, the number of nodes is bounded by a quadratic function depending on the number of states
and symbols of the simulated Turing machine. Also, the total number of symbols in this above
simulation is bounded by a cubic function depending on the number of states and symbols of the
Turing machine. More precisely, it is exactly

4card(Q)(card(V2)− 1)2 + 2(card(V2)− 1)2 + Card(V2) + card(Q)(card(V2)− 1) +
9(card(V2)− 1) + card(Q).

Based on this result, proved the main result of [19]:

Theorem 8 [19]. NP = PTimeAHNEP .

We can define another time complexity class by

ExpTimeAHNEP =
⋃

k≥0

TimeAHNEP (2nk

).

Proposition 1 can now be extended, by the same proof, to

Proposition 2. NEXPTIME ⊆ ExpTimeAHNEP .

hence

Theorem 9. NEXPTIME = ExpTimeAHNEP .

5 Solving NP-complete Problems in Linear Time With Com-
plete AHNEPs With Linearly Bounded Resources

We discuss very briefly and informally how AHNEPs could be used as problem solvers. A possible
correspondence between decision problems and languages can be done via an encoding function which
transforms an instance of a given decision problem into a word, see, e.g., [12]. We say that a decision
problem is solved in linear time by AHNEPs if the following conditions are satisfied:

1. The encoding function can be computed by a deterministic Turing machine in linear time.
Therefore each instance of the problem is linearly related to its associated word.

2. For each instance of the problem one can effectively construct an AHNEP which decides in linear
time the word encoding the given instance. This means that the word is accepted if and only if
the solution to the given instance of the problem is “YES”. This effective construction is called
a linear time solution to the considered problem.

As we shall see in the sequel, some well-known NP-complete problems can be solved in linear time.

• The Bounded Post Correspondence Problem (BPCP)[4, 12]: is a variant of a much celebrated
computer science problem, the Post Correspondence Problem (PCP) known to be unsolvable
[12] in the unbounded case. An instance of the BPCP consists of an alphabet V , two lists of
words over V u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), and K ≤ n. The problem asks
whether or not a sequence i1, i2, . . . , ik, k ≤ K, of positive integers exists, each between 1 and
n, such that ui1ui2 . . . uik

= vi1vi2 . . . vik
.

226

• The 3-colorability problem is to decide whether each vertex in an undirected graph can be colored
by using three colors (say red, blue, and green) in such a way that after coloring, no two vertices
which are connected by an edge have the same color.

• The Common Algorithmic Problem (CAP): let S be a finite set and F be a family of subsets
of S. Find the cardinality of a maximal subset of S which does not include any set belonging
to F . Let n and m be the cardinality of S and F , respectively. This problem might be viewed
as a descriptive format for three NP-complete problems (maximum independence set problem,
vertex cover problem, satisfiability problem) as shown in [16].

• The Hamiltonian Path Problem (HPP) is to decide whether or not a given directed graph has a
Hamiltonian path. A Hamiltonian path in a directed graph is a path which contains all vertices
exactly once.

The next table presents the complexity of AHNEPs solving the above NP-complete problems in
linear time.

Problem Time Size Other resources Work
BPCP O(K) O(K) O(K) [1]

3-colorability O(n + m) O(m) O(m + n) [2]
CAP O(m + n) O(m + n) O(m + n) [20]
HPP O(n) O(n) O(n) [18]

Table 2: Complexity of AHNEPs solving NP-complete problems

We also can say that the networks solving the aforementioned problems, excepting the input and
output nodes, may be viewed as “programs”.

6 Directions for Further Research

We list here several possible directions for further research; clearly, the reader may identify others
some of them being more interesting. However, these appear natural and attractive to us and we
consider that they deserve a deep investigation.

– The first direction we suggest is to consider similar questions (size and time complexity) with
respect to free GHNEPs/AHNEPs. On the other hand, the computational power of these extremely
simple mechanisms seems difficult to be settled.

– Almost all results surveyed here concern complete GHNEPs/AHNEPs. Which of them remain
valid for networks with another underlying structure?

– A natural idea is to replace the evolutionary operations by another very common operation in
the area of DNA computing, that of splicing. In 1987, T. Head introduced the splicing operation as a
language theoretical approach of the recombinant behavior of DNA under the influence of restriction
enzymes and ligases [15]. Roughly speaking, the main idea of the splicing operation is that two
sequences are cut at specified sites, and the first substring of one sequence is pasted to the second
segment of the other and vice versa. The whole research program accomplished for GHNEPs/AHNEPs
could be initiated for GHNEPs/AHNEPs with the evolutionary operations replaced by splicing.

– Another natural and possible fruitful idea is to consider space complexity classes defined on
AHNEPs. At least two definitions might be considered: the length of the longest word navigating in
the network during a computation, the greatest number of different words existing in the networks at
some step during a computation.

– The problem of finding the class of all NP problems that can be solved in linear time by AHNEPs
with linearly bounded resources seems to be quite attractive.

227

References

[1] Castellanos, J., Mart́ın-Vide, C., Mitrana, V., & Sempere, J., Solving NP-complete problems
with networks of evolutionary processors. In: IWANN 2001 (J. Mira, A. Prieto, eds.), LNCS
2084, Springer-Verlag, 2001, 621–628.

[2] Castellanos, J., Mart́ın-Vide, C., Mitrana, V., & Sempere, J., Networks of evolutionary processors,
Acta Informatica, 39 (2003), 517-529.

[3] Castellanos, J., Leupold, P., & Mitrana, V., On the size complexity of hybrid networks of evolu-
tionary processors, Theoret. Comput. Sci., in press.

[4] Constable, R., Hunt, H., & Sahni, S., On the computational complexity of scheme equivalence,
Technical Report No. 74-201, Dept. of Computer Science, Cornell University, Ithaca, NY, 1974.

[5] Csuhaj-Varjú, E., Dassow, J., Kelemen, J., & Păun, G., Grammar Systems, Gordon and Breach,
1993.

[6] Csuhaj-Varjú, E., & Salomaa, A., Networks of parallel language processors. In: New Trends in
Formal Languages (Gh. Păun, A. Salomaa, eds.), LNCS 1218, Springer Verlag, 1997, 299–318.

[7] Csuhaj-Varjú, E., & Mitrana, V., Evolutionary systems: a language generating device inspired
by evolving communities of cells, Acta Informatica 36 (2000), 913–926.

[8] Csuhaj-Varjú, E., & Salomaa, A., Networks of Watson-Crick D0L systems. In: Proc. International
Conference Words, Languages & Combinatorics III (M. Ito, T. Imaoka, eds.), World Scientific,
Singapore, 2003, 134–150.

[9] Csuhaj-Varjú, E., Mart́ın-Vide, C., & Mitrana, V., Hybrid networks of evolutionary processors:
Completeness results, submitted.

[10] Errico, L., & Jesshope, C., Towards a new architecture for symbolic processing. In: Artificial
Intelligence and Information-Control Systems of Robots ’94 (I. Plander, ed.), World Scientific,
Singapore, 1994, 31–40.

[11] Fahlman, S.E., Hinton, G.E., & Seijnowski, T.J., Massively parallel architectures for AI: NETL,
THISTLE and Boltzmann machines. In: Proc. AAAI National Conf. on AI, William Kaufman,
Los Altos, 1983, 109–113.

[12] Garey, M., & Johnson, D., Computers and Intractability. A Guide to the Theory of NP-
completeness, Freeman, San Francisco, CA, 1979.

[13] Hartmanis, J., Lewis II, P.M., & Stearns, R.E., Hierarchies of memory limited computations. In:
Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, 1965, 179–190.

[14] Hartmanis, J., & Stearns, R.E., On the computational complexity of algorithms, Trans. Amer.
Math. Soc. 117 (1965), 533–546.

[15] Head, T., Formal language theory and DNA: an analysis of the generative capacity of specific
recombinant behaviours, Bull. Math. Biology 49 (1987), 737–759.

[16] Head, T., Yamamura, M., & Gal, S., Aqueous computing: writing on molecules. In: Proc. of the
Congress on Evolutionary Computation IEEE Service Center, Piscataway, NJ, 1999, 1006–1010.

[17] Hillis, W.D., The Connection Machine, MIT Press, Cambridge, 1985.
[18] Manea, F., Mart́ın-Vide, V., & Mitrana, V., Solving 3CNF-SAT and HPP in linear time using

WWW, Proc. of MCU 2004, LNCS, in press.
[19] Margenstern, M., Mitrana, V., & Perez-Jimenez, M., Accepting hybrid networks of evolutionary

processors. In: Proc. of DNA 10, LNCS, in press.
[20] Mart́ın-Vide, C., Mitrana, V., Perez-Jimenez, M., & Sancho-Caparrini, F., Hybrid networks of

evolutionary processors. In: Proc. of GECCO 2003, LNCS 2723, Springer Verlag, Berlin, 2003,
401–412.

228

[21] Mart́ın-Vide, C., Mitrana, V., Networks of evolutionary processors: Results and perspectives. In:
Molecular Computational Models: Unconventional Approaches, Idea Group Publishing, Hershey,
2004, 41 pp.

[22] Sankoff, D. et al., Gene order comparisons for phylogenetic inference: Evolution of the mitochon-
drial genome, Proc. Natl. Acad. Sci. USA 89 (1992), 6575–6579.

229

230

