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Abstract

A stable (or independent) set in a graph is a set of pairwise non-adjacent vertices.
The stability number «(G) is the size of a maximum stable set in the graph G.

There are three different kinds of structures that one can see observing behavior
of stable sets of a graph: the enumerative structure, the intersection structure, and
the exchange structure. The independence polynomial of G

%)
I(Gyz) = sha® = 80 4 S12 + S22 4 ... & sa(g)xa(a)7
k=0

defined by Gutman and Harary (1983), is a good representative of the enumerative
structure (s is the number of stable sets of cardinality k in a graph G).

One of the most general approaches to graph polynomials was proposed by Far-
rell (1979) in his theory of F-polynomials of a graph. According to Farrell, any
such polynomial corresponds to a strictly prescribed family of connected subgraphs
of the respective graph. For the matching polynomial of a graph G, this family
consists of all the edges of G, for the independence polynomial of G, this family in-
cludes all the stable sets of G. In fact, various aspects of combinatorial information
concerning a graph is stored in the coefficients of a specific graph polynomial.

In this paper, we survey the most important results referring the independence
polynomial of a graph.

1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V = V(G) and edge set E = E(G). If
X C V, then G[X] is the subgraph of G spanned by X. By G —W we mean the subgraph
GV = W], if W C V(G). We also denote by G — F the partial subgraph of G obtained
by deleting the edges of F, for F C E(G), and we write shortly G —e, whenever F' = {e}.
The neighborhood of a vertex v € V is the set Ng(v) = {w:w €V and vw € E}, and
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Ng[v] = Ng(v)U{v}; if there is no ambiguity on G, we use N(v) and N[v], respectively.
A vertex v is pendant if its neighborhood contains only one vertex; an edge e = wwv
is pendant if one of its endpoints is a pendant vertex. K,, P,,C, denote respectively,
the complete graph on n > 1 vertices, the chordless path on n > 1 vertices, and the
chordless cycle on n > 3 vertices. By Ky, n,,....n, We mean the complete g-partite graph
on ny + ng + ... + ng vertices, where n; > 1,1 < i < g, and if all the ¢ parts are of the
same size p, we write K. As usual, a tree is an acyclic connected graph. A spider
is a tree having at most one vertex of degree > 3. A centipede is a tree denoted by
W, = (A,B,E),n > 1, where AU B is its vertex set, A = {ay,...,an},B = {b1,...,bn},
and the edge set E = {a;b; : 1 <i<n}U{bbiy1:1<i<n—1} (see Figure 1).

aq as as Qp,

b1 bo bs bn,
Figure 1: The centipede W,.

The disjoint union of the graphs G, Gs is the graph G = G1UG> having as vertex set
the disjoint union of V/(G1), V(Gz), and as edge set the disjoint union of E(G1), E(G2).
In particular, UnG denotes the disjoint union of n > 1 copies of the graph G. If G1, G5 are
disjoint graphs, then their join (or Zykov sum) is the graph G + G5 with V(G1)UV (G2)
as vertex set and E(G1) U E(G2) U{v1ve : v1 € V(G1),v2 € V(G2)} as edge set.

A stable set in G is a set of pairwise non-adjacent vertices. A stable set of maximum
size will be referred to as a mazimum stable set of G, and the stability number of G,
denoted by a(G), is the cardinality of a maximum stable set in G.

A graph G is said to be well-covered if every maximal stable set of G is also a
maximum stable set, or equivalently, if the greedy algorithm for constructing stable sets
yields always maximum stable sets. A graph G is called very well-covered provided G
is well-covered, without isolated vertices, and |V(G)| = 2a(G) (Favaron, [31]). Well-
covered graphs were defined by Plummer ([72], [73]). Since then, a number of results
about these graphs have been presented in a number of papers, such as [8], [20], [32],
[34], [54], [74], [75], [80], [86], [90].

If G=(V,E),V ={v; : 1 <i<n}, let G* denote the graph obtained from G by
appending a single pendant edge to each vertex of G, i.e.,

G'=VU{u:1<i<n}, EU{uw;:1<i<n}).

n [90], G* is denoted by G o K and is defined as the corona of G and K;. Let us
remark that G* is well-covered (see, for instance, [55]), and a(G*) = n. In fact, G* is
very well-covered, since it is well-covered, it has no isolated vertices, and its order equals
2a(G*). Moreover, the following result, due to Finbow, Hartnell and Nowakowski, shows
that, under certain conditions, every well-covered graph equals G* for some graph G.

Theorem 1.1 (/33]) Let G be a connected graph of girth > 6, which is isomorphic to
neither C7 nor K1. Then G is well-covered if and only if its pendant edges form a perfect
matching.
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In other words, Theorem 1.1 shows that apart from K; and C7, connected well-
covered graphs of girth > 6 are very well-covered. Recall the following characterization
of well-covered trees, due to Ravindra.

Theorem 1.2 ([75]) A tree having at least two vertices is well-covered if and only if it
has a perfect matching consisting of pendant edges.

It turns out that a tree T' # K7 is well-covered if and only if it is very well-covered.
An alternative characterization of well-covered trees is the following.

Theorem 1.3 (/56]) A tree T is well-covered if and only if either T is a well-covered
spider, or T is obtained from a well-covered tree Ty and a well-covered spider Ty, by
adding an edge joining two non-pendant vertices of T1,Ts, respectively.

Figure 2: Well-covered spiders.

As an example, the tree W, n > 4, presented in Figure 1, is an edge-join of well-
covered spiders, and consequently, is well-covered.

In general, various aspects of combinatorial information concerning a graph is stored
in the coefficients of a specific graph polynomial, such as of polynomials studied in [1],
[5], [23], [25], [28], [29], [30], [36], [37], [71], [76], [77], [78], [38].

Let si be the number of stable sets of cardinality k in a graph G. The polynomial

(@)

I(G;zx) = Z spz’ = s + s1x 4 sox? + ..+ sa(G)xa(G)
k=0

is called the independence polynomial of G, (Gutman and Harary, [41]), the independent
set polynomial of G (Hoede and Li, [50]), or the stable set polynomial of G ([22]). In
[35], the dependence polynomial D(G;z) of a graph G is defined as D(G;x) = I(G; —x).
In [40], D(G;z) is called the cliqgue polynomial of the graph G. Clique polynomials are
related to trace monoids. In fact, ﬁ is the generating function of the sequence of
the number of traces of different sizes in the trace monoid defined by G, see [39], [40].

In [24], the independence polynomial appears as a particular case of a (two-variable)
graph polynomial. More precisely, if P(G;x,y) is equal to the number of vertex colorings
®:V — {1,2,...,a} of the graph G = (V, E) such that for all edges uv € E the relations
O(u) <y and ®(v) < y imply ®(u) # ®(v), then P(G;x,y) is a polynomial in vari-
ables z, y, (called the generalized chromatic polynomial of G, [24]), which simultaneously
generalizes the chromatic polynomial, the matching polynomial, and the independence
polynomial of G, e.g., I(G;x) = P(G;z +1,1).
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Independence polynomial was defined as a generalization of matching polynomial of a
graph, because the matching polynomial of a graph G and the independence polynomial
of its line graph are identical. Recall that given a graph G, its line graph L(G) is the
graph whose vertex set is the edge set of GG, and two vertices are adjacent if they share an
end in G. For instance, the graphs G and G2 depicted in Figure 3 satisfy G2 = L(G1)
and, hence, I(Ga;z) = 1+ 6z + 72% + 23 = M(Gy;x), where M (Gy;z) is the matching
polynomial of the graph G;.

b [
I a I
G c b Gs m
@ @
d € f f a ¢ d

Figure 3: G5 is the line-graph of and G;.

In this paper we survey the most important findings concerning the independence
polynomial.

2 How to compute the independence polynomial

It is easy to deduce (see, for instance, [41], [4], [50]) that
I1(G1 UGy 2) = I(Gr;x) - I(Ga;2), [(G1 + Gy x) = 1(Gh; ) + I(Go;x) — 1.
In [4], Arocha shows that
I(Py;x) = Frp1(x) and I(Cyp,x) = Fr1 () + 20 F,_o(x),

where F,,(x),n > 0, are the so-called Fibonacci polynomials, i.e., the polynomials defined
recursively by

Fo(z)=1,Fi(z) =1,F,(z) = F_1(z) + 2F,—2(x).

Based on this recurrence, one can deduce that

)2l N
I(Py;x) = Z < ) j>-x3.

i=0 J

The following equalities, due to Hoede and Li (see [50], and [41], where the first

equality was presented) are proved to be very useful in calculating of the independence
polynomial for various families of graphs.

Proposition 2.1 Let G = (V,E) be a graph, w € Ve =uwv € E and U C V be such
that G[U] is a complete subgraph of G. Then the following equalities hold:
(i) I(G;z) = I(G —w;z) +x - I(G — Nw|;x);
(ii) I(G;z) = I(G — e;x) — 2% - I(G — N(u) U N (v);z);
(ii) I(Gy2) =I(G=U;z)+z- > I(G— N[v];z).
velU
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As an example, Proposition 2.1 (%) leads to the following recurrence relation (obtained
in [57]), satisfied by the independence polynomial of the centipede W,, (see Figure 1):

IWy2)=042) - {IWh_1;2) + - I(Wy_9;2)},n > 2,
IWo;2) =1, I(Wy;2) = 1+ 2.

Let us denote the independence polynomials of G = (V. E),V = {v; : 1 < i < n},
and G* = (VU {u; : 1 <i<n}, EU{uw; : 1 <i<n}), respectively, by

a(G) a(G”)
I(G;x) = Z spx’ and I(G Z tra®.
k=0

Theorem 2.2 ([62]) For any graph G of order n, the independence polynomial of G* is

and the formulae connecting the coefficients of I(G;x) and I(G*;x) are

k) .
th=) 8- <Z_i>k € {0,1,...,a(G*) = n},
0

j=

Kk _ S
se= 3 (~1)F ¢ <n - ‘;)k € {0,1,....a(G)}.

Jj=0

Using this result, one can obtain, for instance,

I(K:2) = (14 z)" Zsk Q)P =) [T+ (1) 2.

and also, I(W,,;z) = [(P};2) = Y t; - 2%, where

t—zk: (M e qo1,2, )
k= n—k ] ; 5 Ly Sy ey .

J=0

The Cartesian product of the graphs G; = (Vi,E1),Go = (Va, E3) is the graph
G1 X G2 having vertex set V(G1 x Ga) = Vi x Vi and two vertices (x1,x2), (y1,¥y2)
of G; x Go are adjacent if either (i) z1y1 € E(Gp) and z9 = yao, or (i) z1 = 11
and zay2 € E(G2). In [50] it was shown that for two vertex disjoint graphs Gy, Gs
having respectively, ni,ny vertices, the independence polynomial of G; X G2 (i.e., the
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clique polynomial of their Cartesian product G; x G2) can be expressed using the clique
polynomials of the factors as follows:

I(Gy x Go;2) = ng - [(Gy;2) +ny - [(Go;x) — (ng + ng + ninex) + 1.

The lexzicographic product of the graphs G and H is the graph G[H]| with vertex set
V(G) x V(H) and such that the vertices (a,z) and (b, y) are adjacent if and only if either
(i) ab € E(G) or (i) a =b and xy € E(H). Brown et al. showed in [15] that

I(G[H];2) = I(G; I(H;x) — 1),

and used this equality in order to study the location of the roots of independence
polynomials for some families of graphs.

In [41] and [65] it was shown that the derivative of the independence polynomial of
a graph G satisfies:

I'(G;x) = Z I(G — N); x).

veV(G)
In [42], Gutman proved the following theorem.
Theorem 2.3 Let T be a tree, u,v € V(T), and P be the unique path connecting the
two distinct vertices u and v. Then the following identity holds:
T —wuyz) I(T—vyx) — I(Tyz) - I(T —u—v;x)
= —(—2)"®) . [(T — P;x)- (T — N[P); z),

where d(u,v) is the distance between u and v, while N[P] = U{N|w] : w € V(P)}.

As an interesting connection with other well-known polynomials, it is worth recalling
the following relations given in [41]:

S
2\/x”

1 2 1
(P —x)=2Vgnt2. —— .7 (=
(Fo, —a) = 2vamt®- Te= - Tnalg )

where T | T(2) are the Chebyshev polynomials of the first and second kind, respectively
(for the definition of these polynomials see, for example, [3]). Independence polynomials
have connections with Hermite polynomials, as well. For instance, for the line graph of
the complete graph Andrews et al. [3] proved that

I(Cp, —x) = 2v/x" - T{V(

\ﬁ),

where L (K,,) is the line graph of K,,, and H,, is Hermite polynomial.

I(L(K,),—z) =2""2H,(
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3 Conjectures on the independence polynomial
A finite sequence of real numbers (ag, ai, as, ..., a;,) is said to be:

e unimodal if there is some k € {0,1,...,n}, called the mode of the sequence, such
that
ap < ... < ap—1 S Ak 2 Q1 = -0 2 A

the mode is unique if ax_1 < ag > ag+1;
e logarithmically concave (or simply, log-concave) if the inequality
ai > aj—1- a1
is valid for every i € {1,2,....,n — 1}.

Unimodal and log-concave sequences occur in many areas of mathematics, including
algebra, combinatorics, and geometry (see [6], [11], [12], [26], and especially, the surveys
of Brenti, [10], and Stanley, [83]).

It is known that any log-concave sequence of positive numbers is also unimodal. As a
well-known example, we recall that the sequence of binomial coefficients is log-concave.
A less trivial example of a log-concave sequence is the following.

Proposition 3.1 (/89]) If the numbers n,r are non-negative integers, and

G0 =1,0n, = (”_7">,0<r< [n/2],
T

then
(gn,r)2 > gn,'rfl . gn7r+17 1 S r g |_7’L/2J )

i.e., for fized n, the sequence (gn,) is log-concave.

Notice that the sequences (a;) = (1,7,4,2,1) and (b;) = (1,2,3,7,1) are of the
same length, both unimodal, and the first is also log-concave. Nevertheless the sequence
(a; - b;) = (1,14,12,14,1) is not even unimodal.

Proposition 3.2 (/38]) (i) If (a;), (b;) are two positive log-concave sequences of the same
length, then the sequence (a; - b;) is log-concave.

(ii) If the polynomial > p;x* of degree m has all its zeros real, then the sequence
(pi/ (7)) is log-concave.

In the context of our paper, for instance, it is worth mentioning the following results.

Theorem 3.3 (i) (/81]) If ai denotes the number of matchings of size k in a graph,
then the sequence of these numbers is unimodal.

(i) ([51]) If ai. denotes the number of dependent k-sets of a graph G (i.e., sets of size
k that are not stable), then the sequence {a;}y_, is log-concave.
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A polynomial is called unimodal (log-concave) if the sequence of its coefficients is
unimodal (log-concave, respectively).
For instance, I(K,, + (U3K7);x) = 1+ (n + 21)x + 14722 + 34323, n > 1, is

e log-concave, if 1472 — (n +21) - 343 > 0, i.e., for 1 < n < 42; e.g.,

I(Kyo + (U3K;);x) = 1 + 632 + 14722 + 34323

e unimodal, but non-log-concave, whenever 1472 — (n + 21) - 343 < 0 and n < 126,
that is, 43 < n < 126; for instance,

I(Ky3 + (U3K;);x) = 1 + 64z + 14722 + 34323,
1472 — 64 - 343 = —343 < 0.
e non-unimodal for n 4+ 21 > 147, i.e., for n > 127; e.g.,

(K197 4+ (U3K7);2) = 1 + 148z + 14722 + 34323,

For other examples, see [2], [59], [60] and [63]. Moreover, Alavi, Malde, Schwenk and
Erdos proved the following theorem.

Theorem 3.4 ([2]) For every permutation  of {1,2,...,a} there exists a graph G with
a(G) = a such that sy1) < Sp2) < ... < Sp(a)-

Nevertheless, for trees, they stated the following conjecture.
Conjecture 3.5 ([2]) The independence polynomial of a tree is unimodal.

A graph is called claw-free if it has no induced subgraph isomorphic to K; 3. The
following result is due to Hamidoune.

Theorem 3.6 ([47]) The independence polynomial of a claw-free graph is log-concave,
and, hence, unimodal, as well.

As a simple application of this statement, one can easily see that the independence
polynomials of paths and cycles are log-concave.

The product of two polynomials, one log-concave and the other unimodal, is not
always log-concave, for instance, if G = K49 + (U3K7), H = K110 + (U3K7), then

I(G;z) - I(H;z) = (14 61z 4 14722 + 34323) (1 4 131z + 14722 + 34323)
=1+ 192z + 828522 + 289102° + 87465z + 1008422° + 11764925,

which is not log-concave, because 1008422 — 87465 - 117649 = —121060821. However,
the following result, due to Keilson and Gerber, gives a sufficient condition for two
polynomials to have a unimodal product.

Theorem 3.7 ([53]) If P(x) is log-concave and Q(x) is unimodal, then P(x) - Q(x) is
unimodal, while the product of two log-concave polynomials is log-concave.
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Figure 4: The graphs: (a) L, and Wa,; (b) M, and W, 1.

Using this theorem, in [57], [58], we validated the unimodality of the independence
polynomials of some well-covered trees, namely, for centipedes (Figure 1) and well-
covered spiders (Figure 2). In the case of W,, we found a claw-free graph H such that
I(Wy;2) =1 +2x)" - I(H;x), namely H € {L,, M,,} (see Figure 4).

Later, in [61], we proved the following proposition.

Proposition 3.8 (i) I(W,;x) is log-concave, for everyn > 1.
(ii) The independence polynomial of any well-covered spider is log-concave, moreover,

I(Sn;x):(1+x)-{1+kzn:_l K’;) ok 4 (Z_m -xk},nZQ

and its mode is unique and equals 1 + (n — 1) mod 3+ 2 ([n/3] —1).

It is worth mentioning that the problem of finding the mode of the centipede is still
open. In [57] we conjectured that the mode of I(W,,;z) is k = n— f(n) and f(n) is given
by

f(n)=1+|n/5],2<n <6,
fn)=f2+ (n—-2)mod5)+2|(n—2)/5],n>T.

The n-partite graph K, (,) is connected, well-covered, oK, ()) = o, and its inde-
pendence polynomial

I(Kpyiw) =n(l+a)" = (n—-1)=14n)_ (Z>xk
k=1

is log-concave, because the sequence of the binomial coefficients is log-concave. Let us
observe that K, () is very well-covered only for n = 2.
The graph G = (U3K10) + K93y is connected and well-covered, but not very well-
covered, and its independence polynomial is unimodal, but not log-concave:
I(G;z) = 1+ 390z + 66022 + 11202°,
660° — 390 - 1120 = —1200.

Brown, Dilcher and Nowakowski [13] conjectured that I(G;x) is unimodal for each
well-covered graph G. Michael and Traves [69] proved that this assertion is true for
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every well-covered graph G having «(G) < 3, while for a(G) € {4,5,6, 7} they provided
counterexamples.
The independence polynomial of H,, = (U4K10) + Ky4),n > 1, is as follows:

I(Hy;2)=n-(1+2)* + (1 +102)* —n
=1+ (40 + 4n)z + (600 + 6n)z” + (4000 + 4n)z® 4+ (10000 + n)z*.

Let us notice that a(H,) = 4 and H,, is well-covered. Since 40 4 4n < 600 + 6n is true
for any n > 1, it follows that I(H,;z) is not unimodal whenever

4000 + 4n < min{600 + 6n, 10000 + n},

which leads to 1700 < n < 2000, where the case n = 1701 is due to Michael and Traves,
[69]. Moreover, I(H,;z) is not log-concave only for 23 < n < 2453. In [63] the following
result was proved.

Proposition 3.9 For any integer k > 4, there is a well-covered graph G with o (G) = k,
whose independence polynomial is not unimodal.

Nevertheless, the following conjecture is still open.
Conjecture 3.10 I(G;x) is unimodal for every very well-covered graph G.
The following theorem partially supports Conjecture 3.10.
Theorem 3.11 (i) [61] If G is a graph of order n and a(G) < 3, then I(G*;x) is

log-concave with
1 1
{n; J < mode(G*) < {n; J + 1.

In particular, if «(G) =2 and n is odd, or a(G) = 1, then
1
mode(G*) = {n—;— J .

(ii) [59] If G is a graph of order n and a(G) = 4, then I(G*;z) is unimodal with
{n +1

1
J < mode(G*) < {n; J + 2.
Moreover, if n is odd, then

{n;lJ < mode(G*) < {n;lJ + 1L

Michael and Traves proposed the following so-called ” roller-coaster” conjecture.

Conjecture 3.12 (/69]) For each permutation m of the set {[a/2],[a/2] + 1,...,a},
there exists a well-covered graph G, with a(G) = a, whose sequence (Sg, S1, ..., Sa) Satisfies

Sa(fa/2]) < Sn([a/2]+1) < - < Sn(a)-
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This conjecture is still open, but the following facts are already validated.

Theorem 3.13 Conjecture 3.12 is true for well-covered graphs having
(i) stability numbers <7 (Michael and Traves, [69]);
(ii) stability numbers < 11 (Matchett, [68]).

In [13] it was shown that every well-covered graph G on n vertices enjoys the inequal-
ities: sp—1 < k-spand s < (n—k+1)-sx_1,1 <k < a(G), which are strengthened as
follows.

Proposition 3.14 (/69], [62]) If G is a well-covered graph with the stability number o,
then sp—1 < sy 1is true for each 1 <k < (a+1)/2.

A graph G is called quasi-reqularizable if one can replace each edge of G with a non-
negative integer number of parallel copies, so as to obtain a regular multigraph of degree
# 0 (see [8]). Berge proved in [8] that a graph G is quasi-regularizable if and only if
|S] < |N(S)| holds for any stable set S of G. In [64] we showed the following proposition.

Proposition 3.15 If G is a quasi-regularizable graph of order n = 2a(G) = 2a, then
S[(2a=1)/3] = -+ = Sa—1 = Sa-

The above inequalities are also true for very well-covered graphs, since each very
well-covered graph is quasi-regularizable of order n = 2a(G) (see [8]).

The graph G in Figure 5 is very well-covered and its independence polynomial
I(G;z) = 1+ 122 + 5222 + 1102 + 1232* + 702° + 162° is not only unimodal but
log-concave, as well.

G

Figure 5: A very well-covered graph with a log-concave independence polynomial.

Theorem 3.16 ([64]) If G is a very well-covered graph of order n > 2 with a(G) = «,
then

(i) so <1< ... < S1ay21 and S[2a-1)/3] = -+ = Sa—1 = Sa;

(i) I(G; x) is unimodal, while o <9, and it is log-concave for oo < 5.

In other words, we infer that for very well-covered graphs, the domain of the roller-
coaster conjecture can be shorten to

{[a/2],]a/2] +1,....,[(2aa —1)/3]}.

A graph G is called perfect if x(H) = w(H) for any induced subgraph H of G, where
X(H) denotes the chromatic number of H (Berge, [7]). Lovész proved that a graph G is
perfect if and only if |V(H)| < a(H) -w(H) holds for any induced subgraph H of G (see
[67]). This inequality leads to the following proposition.
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Proposition 3.17 (/64]) If G is a perfect graph with o(G) = a and w = w(G), then
S[(wa—1)/(w+1)] = =+ = Sa—1 = Sa-

The validation of the Strong Perfect Graph Conjecture, due to Chudnovsky, Robert-
son, Seymour and Thomas, [21], shows that Ca,11,n > 2, and Cay,41,n > 2, are the only
minimal imperfect graphs. Since both Co, 41,1 > 2, and Cy,41,n > 2, are claw-free, we
infer that the polynomials I(Copy1; ), [(Cony1; ) are log-concave, according to Theo-
rem 3.6. However, there are imperfect graphs, whose independence polynomials are not
unimodal, e.g., the disconnected graph G = (Kg5 + (U4K3)) U Cs has

I(G;z) = (1+ 107z + 542* + 108z* + 81z) (1 + 5z + 527)
=1+ 112z + 5942® + 9132% + 8912* + 9452° + 4052°.

Since each bipartite graph G is perfect and has w(G) < 2, we obtain the following
result.

Corollary 3.18 If G is a bipartite graph with «(G) = a > 1, then
S[(2a—1)/3] = -+ = Sa—1 = Sa-

In particular, a similar result is true for trees, whose importance is significant vis-a-vis
the conjecture of Alavi et al.

4 Roots of independence polynomial of a graph

A lot of information is represented also by the roots of a graph polynomial. For instance,
the roots of the characteristic polynomial of a molecular graph are interpreted in sim-
ple quantum-chemical approaches, as energies of electronic levels of the corresponding
molecules. Even if considered as approximate, this approach plays an outstanding role
in the modern theoretical chemistry.

As in the case of other polynomials, such as matching polynomials, chromatic poly-
nomials, it is natural to ask about the nature and location of the roots. As expected,
the roots of the independence polynomials of (well-covered) graphs were investigated in
a number of papers, as [17], [13], [14], [15], [16], [22], [35], [40], [46].

Heilmann and Lieb (see also Godsil and Gutman, [37]) proved the following assertion.

Theorem 4.1 ([48]) For a graph G, the roots of its matching polynomial are real.

In other words, Theorem 4.1 asserts that for every graph G, the independence poly-
nomial of L(G) has only real roots. Nevertheless, the independence polynomial can have
non-real roots, for example I(K; 3;7) = 1 + 4z + 322 + 3.

In 1990, Hamidoune [47] conjectured that for every claw-free graph, its independence
polynomial has only real roots (see also [84], [85]). Recently, Chudnovsky and Seymour
validated this conjecture, thus extending Theorem 4.1, since line graphs are claw-free.

Theorem 4.2 (/22]) The roots of independence polynomial of a claw-free graph are real.
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The roots of independence polynomials of well-covered graphs are not necessarily real,
even if they are trees. For instance, the trees 77,75 in Figure 6 are very well-covered,
their independence polynomials are respectively,

I(Ty;2) = (1+2)%(1 + 22)(1 + 62 + 72?) = 1 + 102 + 3622 + 602> + 472 4 142°,
I(Ty;x) = (1 +2)(1 + 7o + 142% + 923) = 1 + 8z + 2122 + 2323 + 92%,
but only I(Ty;z) has all the roots real. Hence, Newton’s theorem (stating that if a
polynomial with positive coefficients has only real roots, then its coefficients form a

log-concave sequence) is not useful in solving Conjecture 3.5, even for the particular
case of well-covered trees. Moreover, it is easy to check that the complete n-partite

Tn @ T

Figure 6: Two (very) well-covered trees.

graph G = K,,(4) is well-covered, a(G) = a, and its independence polynomial I(G;z) =
n(l+xz)* — (n—1) has only one real root, whenever « is odd, and exactly two real roots,
for any even a > 2.

Denoting by &min, Emax the smallest and the largest real root of I(G;x), respectively,
we get that &min < &max < 0, since all the coefficients of I(G;z) are positive. The
following proposition summarizes results dealing with the roots of I(G;z).

Theorem 4.3 If G is a graph of order n > 2, then:

1. [85] the smallest (in absolute value) root X of I(G; —z) satisfies
0 <A< a(@)/n, ie., 7@ < &max < 05

2. [40] I(G; —x) has only one root of smallest modulus p and,
furthermore, 0 < p <1, i.e., Emax 18 unique and 0 < |Emax| < 1;

3. [18] a root of smallest modulus of I(G;x) is real, for any graph G, i.e.,
for I(G; ) there exists Emax;

4. [13] for a well-covered graph G on n > 1 vertices, the roots of I(G;x) lie in
the annulus 1/n < |z| < a(G), furthermore, there is a root on the boundary if and

only if G is complete;
5. [46] if i is the greatest real oot of I1(G;x),

then a(G) < —1/p, i.e., =1/a(G) < &max-
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It is shown in [13] that for any well-covered graph G there is a well-covered graph
H with a(G) = a(H) such that G is an induced subgraph of H and I(H;xz) has all its
roots simple and real.

In [17] the problem of determining the maximum modulus of roots of indepen-
dence polynomials for fixed stability number is completely solved, namely, the bound
is (n/a)®™t + O(n“~?), where a = a(G) and n = |V (G)|.

We proved in [62] the following theorem.

Theorem 4.4 For any graph G of order n and with at least one edge, the following
assertions are true:
(i) there exists a bijection between the set of roots of I(G*;x) different from —1
and the set of roots of I(G;x), respecting the multiplicities of the roots;
moreover, rational roots correspond to rational roots, and real roots
correspond to real roots;
(ii) —1 4s a root of I(G*;x) with the multiplicity o(G*) — a(G) > 1;
(iil) if ¢ < =1, then I(G*;x) # 0, moreover, if n is odd, then I(G*;x) < 0,
while for n even, I(G*;x) > 0.

As a corollary of Theorem 4.4 we showed that the real roots of the independence
polynomial of a non-complete well-covered graph G different from the chordless cycle on
7 vertices, but of girth > 6, are in [—1, —1/n), where n = 2a(G), [62].

Brown and Nowakowski investigated the average independence polynomial

AL (2)=2"G) 3 1(Ga),
[V(G)|=n
where the average is taken over all independence polynomials of graphs of order n. They
proved the following theorem.

Theorem 4.5 [18] (i) With probability tending to 1, the independence polynomial of a
graph has a nonreal root.
(ii) The average independence polynomial has all real, simple roots.

5 Independence polynomial and graph isomorphism

There exist non-isomorphic graphs having the same characteristic and matching poly-
nomials [37], or the same Tutte polynomials [91], [70]. Let us observe that if G and H
are isomorphic, then I(G;x) = I(H;x). The converse is not generally true. Following
Hoede and Li, [50], G is called a clique-unique graph if the equality I(G;x) = I(H;x)
implies that G and H are isomorphic (or, equivalently, G and H are isomorphic). One of
the problems they proposed was to determine clique-unique graphs (Problem 4.1, [50]).

A graph G = (V, E) is called threshold (Chvatal and Hammer, [19]) if there exist
non-negative real numbers w,,v € V and t, such that

Zwv <t <= U is a stable set in G.
veS
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Equivalently, G is a threshold graph if and only if it has no induced subgraph isomorphic
to Py, Cy, Cy. In [87], Stevanovic proved that the threshold graphs are clique-unique.

Theorem 5.1 (/87]) If G and H are threshold graphs, then G is isomorphic to H if and
only if I(G;x) = I(H; x).

For instance, the graphs G1, G2, G3, G4 presented in Figure 7 are non-isomorphic,
while I(G1;2) = I(Ga;2) = 1+ 5z + 522, and I(Gs;2) = I(Gg;2) = 1+ 62 + 1022 +
62> + z.

Lol A Ll el

Figure 7: Non-isomorphic (G, G2 are also well-covered) graphs having the same inde-
pendence polynomial I(Gy;x) = I(Ge;z) and I(Gs;x) = I(Gy; x).

Dohmen, Ponitz and Tittmann [24] have found two non-isomorphic trees (depicted
in Figure 8) having the same independence polynomial, namely,

I(Ty;x) = I(Ty;z) = 1+ 102 + 3622 + 5823 + 422* + 122° 4 2°.

T1 T2
® ® *—© ®

Figure 8: Non-isomorphic trees with the same independence polynomial.

The graphs Hy, Ho, H3, H, from Figure 9 satisfy I(Hz;x) = I(Hy;x) = 1+ 62 + 422,
and I(Hy;x) = [(Ha;x) = 1 4 5z + 622 + 223,

10 <P

Figure 9: I(Hy;x) = I(Ha;x) and I(Hs;z) = I(Hyy o

In other words, there exist a well-covered graph and a non-well-covered tree with the
same independence polynomial (e.g., Hy and Hy), and also a well-covered graph, different
from a tree, namely Hy, satisfying I(Hs;x) = I(Hy;x), where Hs is not a well-covered
graph.

As we saw above, the independence polynomial does not distinguish between non-
isomorphic trees. However, the following theorem claims that spiders are uniquely defined
by their independence polynomials in the context of well-covered trees.
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Theorem 5.2 (/62]) The following statements are true:
(i) if G* is connected, then the multiplicity of —1 as a root of I(G*;x) equals 1
if and only if G is isomorphic to K p,n > 1;
(ii) if G* is connected, I(G*;x) = I(T;x) and T is a well-covered spider,
then G* is isomorphic to T.

We conclude this section with the following conjecture from [62].

Conjecture 5.3 If G is a connected graph and T is a well-covered tree, with the same
independence polynomial, then G is a well-covered tree.

6 Other directions of research

To each graph G = (V, E), with the vertex set V' = {1,2,...,n}, one associates the
edge ideal I(G) C Klz1,22,...,2,] which is generated by all monomials x;z; such
that ij € E, where K is an arbitrary field. The graph G is called Cohen-Macaulay,
if K[z1,x2,...,2,]/I(G) is a Cohen-Macaulay ring over any field K. An important
problem in this context is to classify the graphs that are Cohen-Macaulay. Villarreal [92]
determined all Cohen-Macaulay trees, Herzog and Hibi [49] described all bipartite Cohen-
Macaulay graphs, while Herzog, Hibi, and Zheng [52] classified all Cohen-Macaulay
chordal graphs. There may be a way to obtain some of the results on independence
polynomials using commutative algebra: note that the sets of independent vertices in a
well-covered graph form the faces of a pure simplicial complex. Then the results about
I(G, ) can just be cast as results about the f-vector of a simplicial complex. Moreover,
the relation between G and G* in this context has been studied by Simis, Villareal and
Vasconcelos [79].

Enumerative combinatorics, in general, and independence polynomials, in particu-
lar, are used in studying statistical physics and combinatorial chemistry; the matching
polynomial was defined formally in the framework of the theory of monomer-dimer sys-
tems (Heilmann and Lieb [48]). One of the important trends of research in statistical
physics is to try to understand the graph theoretical phenomenon that appears in the
critical region of the Ising model (i.e., the model introduced by Wilhelm Lentz in 1920
as a model for ferromagnetism). For a graph G on n vertices and m edges, the Ising
partition function is defined as Z(G;z,y) = >_ a(i,j)z'y?, where a(i,j) is the number
of bipartitions of the vertices into parts of order (n — j)/2 and (n + j)/2, respectively,
with (m — 7)/2 edges between them. Haggkvist, Andren, Lundow, and Markstrom [45]
discovered some combinatorial properties of the partition function such as its connec-
tions with the matching and the independence polynomial of a graph. In [82] Scott and
Sokal claimed that the lattice gas with repulsive pair interactions is an important model
in equilibrium statistical mechanics. In the special case of a hard-core self-repulsion and
hard-core nearest-neighbor exclusion (i.e. no site can be multiply occupied and no pair of
adjacent sites can be simultaneously occupied), the partition function of the lattice gas
coincides with the independent-set polynomial. In combinatorial chemistry the indepen-
dence polynomial and, more specifically, the matching polynomial, and also polynomials
enumerating all special subsets of hexagons in a molecule, play an important role (see
(9], [43], [44], [66], [78], [77], [76]).
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7

Conclusions

In this survey we have summarized a number of important findings concerning indepen-
dence polynomials of graphs. There are still some open conjectures offering opportunities
for synthesis of both combinatorial and algebraic methods.
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