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Abstract

In the framework of pictures, an NW-prefix set is a code and it gener-
ates an NW-unitary DR-monoid in correspondence with the classical fact
that a prefix word language is a code generating a right-unitary monoid.

1 Introduction

Although prefix (suffix) word subsets constitute a wide class of codes, in the
2-dimensional case this fails to be true with respect to horizontal and vertical

concatenation. For instance, given a ∈ pict(X), the set C =
{

aa ,

(
a
a

)}
is

not a code as it can be easily seen (cf. [1]). Here, a picture analogue of the
prefix word set is defined, the North West-(NW-) prefix set and its syntactic
properties are investigated.

The present paper is divided into four sections.
In Section 2 the needed knowledge and notation for doubly ranked-(DR-)

monoids and picture codes are displayed.
In Section 3 we give the definitions of prefix word sets and the right unitary

monoids that they produce as well as NW-prefix DR-sets and NW-unitary DR-
monoids that they produce. Also, the borders of a picture are defined in order
to be proved that NW-prefix sets are codes.

Finally, in Section 4 some properties of NW-unitary DR-monoids are given.

2 Preliminaries

First we introduce the notion of a doubly ranked monoid which provides an
appropriate algebraic structure in order to study pictures.

A doubly ranked semi-group (DR semi-group for short) is a doubly ranked set
M = (Mm,n) endowed with two operations (simulating) horizontal and vertical
picture concatenation
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h© : Mm,n ×Mm,n′ → Mm,n+n′ (horizontal multiplication)

v© : Mm,n ×Mm′,n → Mm+m′,n (vertical multiplication)

(m, m′, n, n′ ∈ N) which are associative, i.e.

a h©(b h©c) = (a h©b) h©c

a v©(b v©c) = (a v©b) v©c

and compatible to each other, i.e.

(a h©a′) v©(b h©b′) = (a v©b) h©(a′ v©b′)

for all a, a′, b, b′ of suitable rank.
A DR semi-group M = (Mm,n) whose operations h© and v© are unitary,

that is there are two sequences e = (em) and f = (fn) with em ∈ Mm,0 , fn ∈
M0,n (m,n ∈ N) such that

em h©a = a = a h©em , fn v©a = a = a v©fn , e0 = f0 , em v©en = em+n , fm h©fn = fm+n

is called a DR-monoid. The sequences e and f are called respectively the hori-
zontal and vertical units of M . Submonoids are defined in a natural way.

Given DR-monoids M = (Mm,n) and M ′ = (M ′
m,n), a family of functions

hm,n : Mm,n → M ′
m,n ,m, n ∈ N

compatible with horizontal and vertical multiplications

hm,n+n′(a h©b) = hm,n(a) h©hm,n′(b) a ∈ Mm,n, b ∈ Mm,n′ m,n, n′ ∈ N
hm+m′,n(c v©d) = hm,n(c) v©hm′,n(d) c ∈ Mm,n, d ∈ Mm′,n m, m′, n ∈ N

as well as with horizontal and vertical units

hm,0(em) = e′m , h0,n(fn) = f ′n m,n ∈ N
is called a morphism from M to M ′.

Remark. The transpose MT of the DR-monoid M = (Mm,n) is given by

MT
m,n = Mn,m for all m, n ∈ N.

The horizontal (resp. vertical) operation of MT is the vertical (resp. hori-
zontal) operation of M . Thus to any statement concerning DR-monoids, a dual
statement can be obtained by interchanging the roles of horizontal and vertical
operations. ¤

Our next task will be to construct the free DR-monoid generated by a doubly
ranked alphabet X = (Xm,n) whose elements are called pixels. We first define
the sets Pm,n(X) (m, n ∈ N) inductively as follows:
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Xm,n ⊆ Pm,n(X)

if a ∈ Pm,n(X), b ∈ Pm,n′(X), c ∈ Pm′,n(X), then the words

ab ∈ Pm,n+n′(X) ,

(
a
c

)
∈ Pm+m′,n(X)

em ∈ Pm,0(X), fn ∈ P0,n(X) where (em), (fn) (m,n ∈ N) are two sequences
of specified symbols not belonging to X (e0 = f0).

the sets Pm,n(X), m,n ∈ N are exclusively constructed by using the above
three items.

Now the set pict(X) = (pictm,n(X)) of all pictures from X is obtained by
dividing the set

⋃
m,n∈N

Pm,n(X) by the equivalence generated by the relations

a(a′a′′) ∼ (aa′)a′′ ,




b(
b′

b′′

)

 ∼




(
b
b′

)

b′′


 ,

aem ∼ a ∼ ema ,

(
em

en

)
∼ em+n ,

(
fn

b

)
∼ b ∼

(
b
fn

)
, fmfn ∼ fm+n ,

(
aa′

bb′

)
∼

(
a
b

) (
a′

b′

)

for all a, a′, b, b′ of suitable rank.

Convention. Taking into account vertical associativity, we may omit inner
parentheses in the same column, for instance




a1

a2

a3

a4


 =




(
a1

a2

)

(
a3

a4

)


 =




a1


a2

a3

a4





 = ...

It is often convenient to represent in figures the element aa′ by a a′ and

the element
(

b
b′

)
by

b
b′

respectively.

Proposition 1. (cf. [1]) pict(X) is the free DR-monoid generated by X, i.e.
each function of doubly ranked sets F : X → M (M = (Mm,n) a DR-monoid)
can be uniquely extended into a morphism of DR-monoids F̃ : pict(X) → M
defined by the following inductive clauses:
F̃ (x) = F (x) , for all x ∈ X
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F̃ (aa′) = F̃ (a) h©F̃ (a′)

F̃

((
b
b′

))
= F̃ (b) v©F̃ (b′)

for all a, a′, b, b′ ∈ pict(X) of suitable rank. ¤

In the case our alphabet X = (Xm,n) is a monadic doubly ranked alphabet,
that is X1,1 = Σ and Xm,n = ∅ for (m,n) 6= (1, 1), each element of pictm,n(Σ)
can be depicted as

a=

a11 ... a1n

...
...

am1 ... amn

, aij ∈ Σ.

For every DR-monoid M = (Mm,n), each function F : Σ → M1,1 is uniquely
extended into a morphism of DR-monoids F̃ : pict(Σ) → M whose value at the
above picture is

F̃ (a) = (F (a11) h©... h©F (a1n)) v©... v©(F (am1) h©... h©F (amn))
= (F (a11) v©... v©F (am1)) h©... h©(F (a1n) v©... v©F (amn)). ¤

Using Proposition 1 we can explicitly describe the elements of the DR-
submonoid generated by a set. More precisely, let M = (Mm,n) be a DR-monoid
and C = (Cm,n) be a subset of M : Cm,n ⊆ Mm,n for all m,n ∈ N. Further,
let us denote by C◦ the least DR-submonoid of M which includes C, i.e. the
intersection of all DR-submonoids of M including C. We introduce the auxil-
iary doubly ranked alphabet X(C) such that Xm,n(C) is a copy of Cm,n, that
is there are bijections

F (C)m,n : Xm,n(C)→̃Cm,n m,n ∈ N.

Proposition 2. (cf. [1]) It holds that

C◦ = F̃ (C)(pict(X(C)))

where F̃ (C) is the canonical extension of F (C) granted from Proposition 1. ¤

Remark. C◦ is the generalized Kleene-star of Simplot(cf. [5]) . ¤

The present framework enables us to speak of codes in a quite natural way.
In the 1-dimensional case, for an alphabet A, the subset Y of A∗ is a code if

the canonical monoid morphism h : Y ∗ → A∗ induced by the canonical injection
Y → A∗ is injective.

Similarly, C ⊆ pict(X) is a picture code whenever the canonical morphism
of DR-monoids induced by the function

F (C) : X(C) → pict(X)

is injective.
Manifestly, C can not contain any element of the units e, f .
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Example 1. Let X = {a, b, c} with rank(a) = (1, 1), rank(b) = (1, 2), rank(c) =

(2, 1). Then the set C =
{(

aa
b

)
,

(
a
a

)
c

(
a
a

)
, b

}
is a code. ¤

Moreover, the valuation morphism valM : pict(M) → M associated with a
DR-monoid M , is the unique extension of the identity function id : M → M
(cf. [2]).

For instance, if m,m′ ∈ pict1,2(M) and m′′ ∈ pict2,1(M), then valM sends
the picture

m m′′

m′

of pict2,3(M) to the element (m v©m′) h©m′′ of M2,3.
In particular for M = pict(X) we have the morphism of DR-monoids valX :

pict(pict(X)) → pict(X).
Given p ∈ pict(X), any picture p ∈ val−1

X (p) is called a partition of p. For
instance

+

is a partition of the picture

+
.

Given a partition p of a picture p ∈ pict(X) we say that r ∈ pict(X) belongs
to p if r is a piece of p.

Apparently, if C ⊆ pict(X) is a code, every element of C◦ has a single
partition and this fact is also analogous to the word case. Indeed, another
equivalent definition of word code is the following.

Let A be an alphabet. A subset Y of the free monoid A∗ is a code over A if
for all k, l > 1 and y1, ..., yk, y′1, ..., y

′
l ∈ Y the condition y1...yk = y′1...y

′
l implies

k = l and yi = y′i for i = 1, ..., k.In other words, a set Y is a (word) code if any
word in Y + has a unique factorization in words in Y (cf. [3]).

Next we have

Proposition 3. (cf. [1]) Consider, a DR-submonoid M of pict(X) and let

M = (M − e)− f.

Then M has a minimum, with respect to inclusion, set of generators

C(M) = M − (M h©M ∪M v©M).

Proposition 4. (cf. [1]) The minimum set of generators of a free DR-submonoid
M of pict(X), is a picture code.

Conversely for any picture code C ⊆ pict(X), C◦ is a free DR-submonoid of
pict(X) and its minimum set of generators is again C.
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If M is a free DR-submonoid of pict(X), then we say that C(M) is the basis
of M .

In the sequel we are going to define some properties of DR-submonoids of
pict(X).

We say that a DR-submonoid M of pict(X) is horizontally stable (HS) when-
ever for all a ∈ pictm,n1(X) , b ∈ pictm,n2(X) , c ∈ pictm,n3(X) it holds

a ∈ Mm,n1 , a h©b ∈ Mm,n1+n2 , b h©c ∈ Mm,n2+n3 , c ∈ Mm,n3 ⇒ b ∈ Mm,n2 .

M is said to be vertically stable (VS) whenever its transpose MT is horizontally
stable, that is for all a ∈ pictm1,n(X) , b ∈ pictm2,n(X) , c ∈ pictm3,n(X) it
holds

a ∈ Mm1,n , a v©b ∈ Mm1+m2,n , b v©c ∈ Mm2+m3,n , c ∈ Mm3,n ⇒ b ∈ Mm2,n.

M is said to be circularly stable (CS) whenever for all r ∈ pictm1,n1(X) , s ∈
pictm1,n2(X) , t ∈ pictm2,n2(X) , u ∈ pictm2,n1(X)

r s
u t

(figure 1)

it holds

r h©s ∈ Mm1,n1+n2 , s v©t ∈ Mm1+m2,n2 , u h©t ∈ Mm2,n1+n2 , r v©u ∈ Mm1+m2,n1

implies

r ∈ Mm1,n1 , s ∈ Mm1,n2 , t ∈ Mm2,n2 , u ∈ Mm2,n1 .

Finally, M is said to be stable if it is simultaneously (HS), (VS), and (CS).
Now we state

Theorem 1. (cf. [1]) A DR-submonoid M of pict(X) is free if and only if it
is stable.

Example 2. A DR-submonoid M of pict(X) fulfilling both (HS) and(VS) may
not be free. Take for instance the monadic alphabet X = {a, b, c, d, g, h},

C =
{

ab, gh, c, d,

(
a
d

)
,

(
b
g

)
,

(
c
h

)}

and M = C◦.
M is (HS)+(VS) but fails to be free since the picture

(
abc
dgh

)

has two distinct partitions in elements of C.
The reason why M is not free is because it is not (CS). Indeed

abc ∈ M1,3 , dgh ∈ M1,3 ,

(
a
d

)
∈ M2,1 ,

(
bc
gh

)
∈ M2,2

while a /∈ M1,1.
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We close this section by constructing the DR-submonoid which is generated
by a DR-set C ⊆ pict(X).

The powers of C are inductively defined by

C1 = C

Ck =

(
k−1⋃

i=1

Ci h©Ck−i

)
∪




k−1⋃

j=1

Cj v©Ck−j




and it holds
C◦ = E ∪ F ∪ C1 ∪ C2 ∪ ...

For example, if C =
{

aa ,

(
a
a

)}
, rank(a) = (1, 1), then

C2k+1 = {a h©... h©a︸ ︷︷ ︸
4k+2 times

, a v©... v©a︸ ︷︷ ︸
4k+2 times

, (a v©a) h©... h©(a v©a)︸ ︷︷ ︸
2k+1 times

, (a h©a) v©... v©(a h©a)︸ ︷︷ ︸
2k+1 times

}

and
C2k = {p ∈ a◦/rank(p) = (m,n) , m · n = 4k}

for all k > 1.
Then

C◦ = {p ∈ a◦/rank(p) = (m,n) , m even or n even}.

3 Prefix picture sets

Now we recall some known facts about prefix word codes that we are going to
study into the framework of pictures.

Let A be an ordinary alphabet and Y a subset of A∗. Y is said to be prefix
if for all y, y′ ∈ Y, u ∈ A∗

yu = y′ implies u = 1.

Suffix subsets of A∗ are defined dually.

Proposition 5. (cf. [3]) Any prefix (suffix) set of words Y ⊆ A∗ − {1} is a
code.

Furthermore, let M be a monoid and N a submonoid of M .
Then N is right-unitary (in M) if for all u, v ∈ M

u, uv ∈ N ⇒ v ∈ N.

Left-unitarity is obtained dually.
Next important result holds.
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Proposition 6. (cf. [3]) A submonoid M of A∗ is right-unitary (resp. left-
unitary) if and only if its minimal set of generators is a prefix code(resp. suffix
code).

In particular, a right-unitary (left-unitary) submonoid of A∗ is free.

From now on, we assume that X is finite monadic DR-alphabet, i.e. X =
X1,1 and Xm,n = ∅ for (m,n) 6= (1, 1).

Every element r ∈ pict(X) can be written as

r =
rNW rN rNE

rW rc rE

rSW rS rSE

with rc, rk, rij ∈ pict(X), k, i, j ∈ {N, S,E, W} of suitable rank.
We say that

• rNW , rW , rSW lie on the western border of r

• rSW , rS , rSE lie on the southern border of r

• rNE , rE , rSE lie on the eastern border of r

• rNW , rN , rNE lie on the northern border of r

• rc lies in the center of r.

We are ready now to extend the notion of prefix sets.

1. The set C ⊆ pict(X) is said to be North-West prefix (NW-prefix for short)
if for all r, r′ ∈ pict(X) , s, s′, t, t′ ∈ pict(X) of suitable rank such that

rs,

(
r
t

)
∈ C◦

it holds

(hp) if r′s′ ∈ C belongs to a partition of rs so that r′ lies on the eastern
border of r and s′ lies on the western border of s

r r′ s′ s

then s′ is a unit element, i.e. (for rank(r′s′) = (m,n)) s′ = em

(vp) if
(

r′

t′

)
∈ C belongs to a partition of

(
r
t

)
so that r′ lies on the

southern border of r and t′ lies on the northern border of t, i.e.

r

t
r′

t′
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then t′ is a unit element, i.e. (for rank

((
r′

t′

))
= (m,n)) t′ = fn.

We define analogously SE-, NE- and SW -prefix subsets of pict(X).

2. The set C ⊆ pict(X) with C ∩ (e ∪ f) 6= ∅ is said to be NW - (SE-, NE-
and SW -) prefix if

em ∈ C ⇒ C = {em} and fn ∈ C ⇒ C = {fn} for all m,n ∈ N.

Moreover, a DR-submonoid M of pict(X) is NW -unitary if for all r ∈
pictm,n(X), s ∈ pictm,n′(X), t ∈ pictm′,n(X)

rs,

(
r
t

)
∈ M implies r, s, t ∈ M. (1)

We define NE-, SW -, SE-unitary DR-submonoids of pict(X) in a similar man-
ner.

Remark.

1. i) For r′ ∈ C◦, r′s′ ∈ C (r′, s′ ∈ pict(X) , rank(r′) = (m,n)) and for
C ⊆ pict(X) NW -prefix, we get from the definition that s′ = em.

ii) For r′ ∈ C◦,
(

r′

t′

)
∈ C (r′, s′ ∈ pict(X) , rank(r′) = (m,n)) and

C ⊆ pict(X) NW -prefix, we get from the definition that t′ = fn.

By i) and ii) we understand that every NW -prefix subset of pict(X)
is simultaneously horizontally- and vertically-prefix respectively. Conse-
quently our notion of NW -prefix (resp. SE-prefix) is a natural general-
ization of prefix (resp. suffix) word sets.

2. i) For s = em, (1) gives

r,

(
r
t

)
∈ M implies t ∈ M.

ii) For t = fn, (1) gives

r, rs ∈ M implies s ∈ M.

By i) and ii) we understand that every NW -unitary DR-submonoid M of
pict(X) is simultaneously horizontally- and vertically-unitary respectively.
Consequently, our notion of NW -unitary (resp. SE-unitary) is a natural
generalization of word right-unitary (resp. left-unitary) monoids.

Proposition 7. Let M be a DR-submonoid of pict(X). Then

M NW -unitary implies that M is free.
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Proof. If r, rs, su, u ∈ M ⇒ r, rs ∈ M ⇒ s ∈ M and M is (HS).
We prove the vertical stability of M in a similar manner.

Finally, let rs, tu,

(
r
t

)
,

(
s
u

)
∈ M. Since rs,

(
r
t

)
∈ M ⇒ r, s, t ∈ M. But

t, tu ∈ M ⇒ u ∈ M. Therefore, M is circularly stable.
According to Theorem 1, since M is stable, it is free.

In order to prove that an NW -prefix set C ⊆ pict(X) is a code, we need the
following:

Theorem 2. If C ⊆ pict(X) is NW -prefix, then C◦ is NW -unitary DR-
submonoid of pict(X).

Conversely, if M is an NW -unitary DR-submonoid of pict(X), then its basis
C(M) is an NW -prefix set and C(M) ⊆ pict(X).

Proof.” ⇒ ” Let C ⊆ pict(X) NW -prefix and rs,

(
r
t

)
∈ C◦.

If r /∈ C◦ or s /∈ C◦, then there is r′s′ ∈ C (r′, s′ ∈ pict(X), rank(r′) =
(m, n)) in the partition of rs such that r′ lies on the eastern border of r
and s′ lies on the western border of s:

r r′ s′ s .

But since C is prefix, we get s′ = em, which is not true by hypothesis.
Thus r, s ∈ C◦.

Similarly we prove that also t ∈ C◦, and therefore C◦ is NW -unitary.

” ⇐ ” Conversely let M be an NW -unitary DR-submonoid of pict(X). Then M
is free and its basis C(M) is a code. Thus C(M) ⊆ pict(X).

Now, let rs,

(
r
t

)
∈ M = C(M)◦, r′s′ ∈ C(M) (r, r′ ∈ pict(X), rank(r) =

(m, n)) with r′s′ belonging to a partition of rs so that r′ lies on the eastern
border of r and s′ lies on the western border of s:

r r′ s′ s .

Since M is NW -unitary r, s, t ∈ M .

If s′ 6= em then since r, s ∈ C◦, there are r′SE , s′SW ⊆ pict(X) of r′

and s′ respectively, such that r′SE lies on the eastern border of a certain
r′′ ∈ C(M) which belongs to a partition of r and s′SW lies on the western
border of a certain s′′ ∈ C(M) which belongs to a partition of s. Then rs
has two different partitions of elements of C(M) which is not true since
C(M) is a code. Therefore s′ = em, r, s, t ∈ C◦ and r′ ∈ C.
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Similarly we prove the vertical prefix property (vp) of NW -prefix sets.

Remark. Although Theorem 2 that precedes is the picture analogue of
Proposition 6, its proof is totally different because of the fact that a picture
may be constructed by its pixels horizontally or vertically.

Corollary 1. If C ⊆ pict(X) is NW -prefix, then C is a picture code.

Proof. If C is NW-prefix, then by Theorem 2 C◦ is an NW-unitary DR-
submonoid of pict(X). By Proposition 7 we deduce that C◦ is free, and finally
by Proposition 4 we get that C is a picture code.

Example 3. Let X = {a, b, c, d, g, t, s, u} and C ⊆ pict(X) NW -prefix. Then

a, b,

(
c
c

)
, gu,




cd
cg
tt


 ,

(
bs
ds

)
∈ C◦ implies d, g, u, tt,

(
s
s

)
∈ C◦.

Indeed, since




ab
cd
cg
tt


 ,




abs
cds
cgu


 ∈ C◦ and C◦ is NW -unitary, we get




ab
cd
cg


 , tt,




s
s
u


 ∈

C◦.
But

ab,




ab
cd
cg


 ∈ C◦ ⇒

(
cd
cg

)
∈ C◦

and since
(

c
c

)
∈ C◦ we get

(
d
g

)
∈ C◦.

Also, 


(
bs
ds

)

gu


 =




b
d
g







s
s
u




and since C◦ is circularly stable, we get
(

b
d

)
, g,

(
s
s

)
, u ∈ C◦.

Finally,

b,

(
b
d

)
∈ C◦ ⇒ d ∈ C◦.

That is d, g, u, tt,

(
s
s

)
∈ C◦.
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4 Properties of prefix picture sets

In this section we list a series of remarkable properties that the prefix picture
sets have.

Proposition 8. Let X be a finite monadic DR-alphabet and let C ⊆ pict(X)
be NW -prefix. Then

1. a ∈ C◦ ,
a b
c d

∈ C implies bs /∈ C◦ and
(

c
t

)
/∈ C◦ for all s, t ∈

pict(X) of suitable rank.

i)
(

ab
t

)
∈ C and a ∈ C◦ , bs ∈ C◦ (b, s, t ∈ pict(X) , rank(a) =

(m,n)) imply b = em, t = fn, s ∈ C◦.

ii)
(

a
c

)
s ∈ C and a ∈ C◦ ,

(
c
t

)
∈ C◦ (c, s, t ∈ pict(X) , rank(a) =

(m,n)) imply c = fn, s = em, t ∈ C◦.

2. cs ∈ C and b,

(
bc
t

)
∈ C◦ (rank(c) = (m,n) , c ∈ pict(X) , s, t ∈

pict(X)) imply s = em, t ∈ C◦.

i) cs ∈ C and
(

c
t

)
∈ C◦ (c ∈ pict(X) , s, t ∈ pict(X) , rank(c) =

(m,n)) imply s = em, t ∈ C◦.
ii) c ∈ C◦ , cs ∈ C (s ∈ pict(X) , rank(c) = (m,n)) imply s = em.

3. the transpose analog of 2.

4.
(

cd
t

)
∈ C , a, b, c,

(
b
d

)
s ∈ C◦ (d ∈ pict(X) , s, t ∈ pict(X)) with

rank(a) = (m,n), rank(b) = (m,n′), rank(c) = (m′, n), rank(d) = (m′, n′)
imply c = em′ , t = fn′ , a = em, s ∈ C◦.

5. the transpose analog of 4.

6. b, c, s, t,

(
b
d

)
s,

(
cd
t

)
∈ C◦ (d ∈ pict(X)) with rank(b) = (m, n), rank(c) =

(m, n′), rank(d) = (m,n), rank(t) = (m′′, n + n′) and m = λm′ or m′ =
λm (λ ∈ N∗) imply d ∈ C◦.

Proof. We only prove properties 1, 4 and 6. The proofs of 2, 3, 5 are similar.

1. Since C◦ is NW -unitary and
(

ab
cd

)
, abs ∈ C◦, we get ab, cd, s ∈ C◦.

By a, b ∈ pict(X) we get ab, cd ∈ C◦, i.e.
(

ab
cd

)
∈ C ∩ C◦ v©C◦ which is

not true since C is a code. Therefore bs /∈ C◦ and similarly we prove that(
c
t

)
/∈ C◦ for all t ∈ pict(X) of suitable rank.
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i) By
(

ab
t

)
∈ C and abs ∈ C◦ we deduce that ab, s, t ∈ C◦. But a ∈ C◦

and ab ∈ C◦, i.e. b ∈ C◦. Let rank(b) = (m,n′).

If t 6= fn+n′ , then
(

ab
t

)
∈ C ∩ C◦ v©C◦, not true.

If t = fn+n′ and b 6= em then
(

ab
t

)
= ab ∈ C ∩ C◦ h©C◦, not true.

Therefore t = fn+n′ and b = em, i.e. n′ = 0. Thus t = fn.

4. By

a b
c d

t
, a b s

c d
∈ C◦

and C◦ being NW -unitary we get that

a b
c d

, s, t ∈ C◦

Since ab,

(
ab
cd

)
∈ C◦ we deduce that cd ∈ C◦. But c, cd ∈ C◦ and therefore

d ∈ C◦.

If t 6= fn+n′ then
(

cd
t

)
∈ C ∩ C◦ v©C◦, a contradiction because C is a

code.

If t = fn+n′ and c 6= em′ then cd ∈ C ∩ C◦ h©C◦, not true.

We deduce that t = fn+n′ and c = em′ , i.e. n = 0, t = fn′ , a = em and
s ∈ C◦.

6. i) Let m′ = λm and d /∈ C◦. Then the picture

p1 = (((c v©· · · v©c︸ ︷︷ ︸
λ times

) h©b) v©
(

cd
t

)
v© t v©· · · v©t︸ ︷︷ ︸

(λ+1)m−1 times

) h©(s v©· · · v©s︸ ︷︷ ︸
m′′+1 times

)

coincides with the picture

p2 = ((c v©· · · v©c︸ ︷︷ ︸
λ+1 times

) h©
(

b
d

)
s) v©(( t v©· · · v©t︸ ︷︷ ︸

(λ+1)m times

h©(s v©· · · v©s︸ ︷︷ ︸
m′′ times

))

But since d /∈ C◦, the above picture will have two different partitions
of elements of C, contradiction because C is a code.
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ii) If m = λm′ then we proceed as in case i) by replacing p1 and p2 by

p′1 = (((c v©· · · v©c︸ ︷︷ ︸
λ times

) h©(b v©· · · v©b︸ ︷︷ ︸
λ2 times

)) v©
(

cd
t

)
v© t v©· · · v©t︸ ︷︷ ︸

(λ+1)m−1 times

) h©(s v©· · · v©s︸ ︷︷ ︸
λ+m′′times

)

and

p′2 = (c v©· · · v©c︸ ︷︷ ︸
λ+1 times

) h©(((b v©· · · v©b︸ ︷︷ ︸
λ2−1 times

) h©(s v©· · · v©s︸ ︷︷ ︸
λ−1 times

)) v©
(

b
d

)
s) v©((t v©· · · v©t︸ ︷︷ ︸

λ+1 times

) h©(s v©· · · v©s︸ ︷︷ ︸
m′′ times

)).

Example 4. A DR-submonoid C◦ ⊆ pict(X) which satisfies the properties 1-6,
may not be NW -unitary. Take for instance, X = {a, b, c, d, s1, s2, g, h, t1, t2}
and

C =
{(

a
a

)
, bb, s1, d,

(
ccs2

ghs2

)
, cc,

(
dg
t1t1

)
,

(
h
t2

)}
.

C◦ satisfies 1-6 but is not NW -unitary, because although




abb
acc
dgh

t1t1t2


 ,




abbs1

accs2

dghs2


 ∈

C◦, the element




abb
acc
dgh


 /∈ C◦.
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