Prefix Picture Sets and Picture Codes

Archontia GRAMMATIKOPOULOU
Department of Mathematics
Aristotle University of Thessaloniki
54124 Thessaloniki,Greece
e-mail:arxontia@math.auth.gr

Abstract

In the framework of pictures, an NW-prefix set is a code and it generates an NW-unitary DR-monoid in correspondence with the classical fact that a prefix word language is a code generating a right-unitary monoid.

1 Introduction

Although prefix (suffix) word subsets constitute a wide class of codes, in the 2-dimensional case this fails to be true with respect to horizontal and vertical concatenation. For instance, given $a \in \operatorname{pict}(X)$, the set $C=\left\{a a,\binom{a}{a}\right\}$ is not a code as it can be easily seen (cf. [1]). Here, a picture analogue of the prefix word set is defined, the North West-(NW-) prefix set and its syntactic properties are investigated.

The present paper is divided into four sections.
In Section 2 the needed knowledge and notation for doubly ranked-(DR-) monoids and picture codes are displayed.

In Section 3 we give the definitions of prefix word sets and the right unitary monoids that they produce as well as NW-prefix DR-sets and NW-unitary DRmonoids that they produce. Also, the borders of a picture are defined in order to be proved that NW-prefix sets are codes.

Finally, in Section 4 some properties of NW-unitary DR-monoids are given.

2 Preliminaries

First we introduce the notion of a doubly ranked monoid which provides an appropriate algebraic structure in order to study pictures.

A doubly ranked semi-group (DR semi-group for short) is a doubly ranked set $M=\left(M_{m, n}\right)$ endowed with two operations (simulating) horizontal and vertical picture concatenation

$$
\begin{aligned}
& \text { (h) }: M_{m, n} \times M_{m, n^{\prime}} \rightarrow M_{m, n+n^{\prime}} \text { (horizontal multiplication) } \\
& \text { (v) }: M_{m, n} \times M_{m^{\prime}, n} \rightarrow M_{m+m^{\prime}, n} \text { (vertical multiplication) }
\end{aligned}
$$

$\left(m, m^{\prime}, n, n^{\prime} \in \mathbb{N}\right)$ which are associative, i.e.

$$
\begin{aligned}
& a(1)(b(h) c)=(a(h) b)(h) c \\
& a \backsim(b(1) c)=(a(\mathrm{~V} b) \vee c
\end{aligned}
$$

and compatible to each other, i.e.

$$
\left(a(h) a^{\prime}\right) \odot\left(b(h) b^{\prime}\right)=(a \backsim b)(h)\left(a^{\prime} \odot b^{\prime}\right)
$$

for all $a, a^{\prime}, b, b^{\prime}$ of suitable rank.
A DR semi-group $M=\left(M_{m, n}\right)$ whose operations (h) and (V) are unitary, that is there are two sequences $e=\left(e_{m}\right)$ and $f=\left(f_{n}\right)$ with $e_{m} \in M_{m, 0}, f_{n} \in$ $M_{0, n}(m, n \in \mathbb{N})$ such that
e_{m} (h) $a=a=a$ (h) e_{m}, f_{n} (1) $a=a=a\left(f_{n}, e_{0}=f_{0}, e_{m}\right.$ (V) $e_{n}=e_{m+n}, f_{m}$ (h) $f_{n}=f_{m+n}$
is called a $D R$-monoid. The sequences e and f are called respectively the horizontal and vertical units of M. Submonoids are defined in a natural way.

Given DR-monoids $M=\left(M_{m, n}\right)$ and $M^{\prime}=\left(M_{m, n}^{\prime}\right)$, a family of functions

$$
h_{m, n}: M_{m, n} \rightarrow M_{m, n}^{\prime} \quad, m, n \in \mathbb{N}
$$

compatible with horizontal and vertical multiplications

$$
\begin{array}{lll}
h_{m, n+n^{\prime}}(a(\bigcap) b)=h_{m, n}(a)(\bigcap) h_{m, n^{\prime}}(b) & a \in M_{m, n}, b \in M_{m, n^{\prime}} & m, n, n^{\prime} \in \mathbb{N} \\
\left.h_{m+m^{\prime}, n}(c \bigvee) d\right)=h_{m, n}(c) \bigvee h_{m^{\prime}, n}(d) & c \in M_{m, n}, d \in M_{m^{\prime}, n} & m, m^{\prime}, n \in \mathbb{N}
\end{array}
$$

as well as with horizontal and vertical units

$$
h_{m, 0}\left(e_{m}\right)=e_{m}^{\prime}, h_{0, n}\left(f_{n}\right)=f_{n}^{\prime} \quad m, n \in \mathbb{N}
$$

is called a morphism from M to M^{\prime}.
Remark. The transpose M^{T} of the DR-monoid $M=\left(M_{m, n}\right)$ is given by

$$
M_{m, n}^{T}=M_{n, m} \text { for all } m, n \in \mathbb{N} .
$$

The horizontal (resp. vertical) operation of M^{T} is the vertical (resp. horizontal) operation of M. Thus to any statement concerning DR-monoids, a dual statement can be obtained by interchanging the roles of horizontal and vertical operations.

Our next task will be to construct the free DR-monoid generated by a doubly ranked alphabet $X=\left(X_{m, n}\right)$ whose elements are called pixels. We first define the sets $P_{m, n}(X)(m, n \in \mathbb{N})$ inductively as follows:

- $X_{m, n} \subseteq P_{m, n}(X)$
- if $a \in P_{m, n}(X), b \in P_{m, n^{\prime}}(X), c \in P_{m^{\prime}, n}(X)$, then the words

$$
a b \in P_{m, n+n^{\prime}}(X) \quad, \quad\binom{a}{c} \in P_{m+m^{\prime}, n}(X)
$$

- $e_{m} \in P_{m, 0}(X), f_{n} \in P_{0, n}(X)$ where $\left(e_{m}\right),\left(f_{n}\right)(m, n \in \mathbb{N})$ are two sequences of specified symbols not belonging to $X\left(e_{0}=f_{0}\right)$.
- the sets $P_{m, n}(X), m, n \in \mathbb{N}$ are exclusively constructed by using the above three items.

Now the set $\operatorname{pict}(X)=\left(\operatorname{pict}_{m, n}(X)\right)$ of all pictures from X is obtained by dividing the set $\underset{m, n \in \mathbb{N}}{ } P_{m, n}(X)$ by the equivalence generated by the relations

$$
\begin{gathered}
\left.a\left(a^{\prime} a^{\prime \prime}\right) \sim\left(a a^{\prime}\right) a^{\prime \prime} \quad, \quad\left(\begin{array}{c}
b \\
b^{\prime} \\
b^{\prime \prime}
\end{array}\right)\right) \sim\left(\begin{array}{c}
b \\
b^{\prime} \\
b^{\prime \prime}
\end{array}\right) \\
a e_{m} \sim a \sim e_{m} a \quad, \quad\binom{e_{m}}{e_{n}} \sim e_{m+n}, \\
\binom{f_{n}}{b} \sim b \sim\binom{b}{f_{n}} \quad, \quad f_{m} f_{n} \sim f_{m+n}, \\
\binom{a a^{\prime}}{b b^{\prime}} \sim\binom{a}{b}\binom{a^{\prime}}{b^{\prime}}
\end{gathered}
$$

for all $a, a^{\prime}, b, b^{\prime}$ of suitable rank.
Convention. Taking into account vertical associativity, we may omit inner parentheses in the same column, for instance

$$
\left.\left.\left.\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\binom{a_{1}}{a_{2}}\right)=\left(\begin{array}{c}
a_{1} \\
a_{3} \\
a_{4}
\end{array}\right)\right)=\left(\begin{array}{c}
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)\right)=\ldots
$$

It is often convenient to represent in figures the element $a a^{\prime}$ by \begin{tabular}{|l|l}
\hlinea \& a^{\prime}

\hline

 the element $\binom{b}{b^{\prime}}$ by

\hlineb

\hlineb^{\prime}
\end{tabular} respectively.

Proposition 1. (cf. [1]) pict (X) is the free $D R$-monoid generated by X, i.e. each function of doubly ranked sets $F: X \rightarrow M\left(M=\left(M_{m, n}\right)\right.$ a DR-monoid $)$ can be uniquely extended into a morphism of DR-monoids $\widetilde{F}: \operatorname{pict}(X) \rightarrow M$ defined by the following inductive clauses:

- $\widetilde{F}(x)=F(x)$, for all $x \in X$
_ $\widetilde{F}\left(a a^{\prime}\right)=\widetilde{F}(a)(h) \widetilde{F}\left(a^{\prime}\right)$
- $\widetilde{F}\left(\binom{b}{b^{\prime}}\right)=\widetilde{F}(b) \ominus \widetilde{F}\left(b^{\prime}\right)$
for all $a, a^{\prime}, b, b^{\prime} \in \operatorname{pict}(X)$ of suitable rank.
In the case our alphabet $X=\left(X_{m, n}\right)$ is a monadic doubly ranked alphabet, that is $X_{1,1}=\Sigma$ and $X_{m, n}=\emptyset$ for $(m, n) \neq(1,1)$, each element of $\operatorname{pict}_{m, n}(\Sigma)$ can be depicted as

$$
a=\begin{array}{|ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array} \quad, \quad a_{i j} \in \Sigma .
$$

For every DR-monoid $M=\left(M_{m, n}\right)$, each function $F: \Sigma \rightarrow M_{1,1}$ is uniquely extended into a morphism of DR-monoids $\widetilde{F}: \operatorname{pict}(\Sigma) \rightarrow M$ whose value at the above picture is

$$
\begin{aligned}
\widetilde{F}(a) & =\left(F\left(a_{11}\right) \text { (h) } \ldots \text { (h) } F\left(a_{1 n}\right)\right) \text { (V) } \ldots \text { (V) }\left(F\left(a_{m 1}\right) \text { (h) } \ldots \text { (h) } F\left(a_{m n}\right)\right) \\
& =\left(F\left(a_{11}\right) \text { (v) } \ldots\left(\mathrm{V} F\left(a_{m 1}\right)\right) \text { (h) } \ldots \text { (h) }\left(F\left(a_{1 n}\right) \text { (v) } \ldots \text { (V) } F\left(a_{m n}\right)\right) .\right.
\end{aligned}
$$

Using Proposition 1 we can explicitly describe the elements of the DRsubmonoid generated by a set. More precisely, let $M=\left(M_{m, n}\right)$ be a DR-monoid and $C=\left(C_{m, n}\right)$ be a subset of $M: C_{m, n} \subseteq M_{m, n}$ for all $m, n \in \mathbb{N}$. Further, let us denote by C° the least DR-submonoid of M which includes C, i.e. the intersection of all DR-submonoids of M including C. We introduce the auxiliary doubly ranked alphabet $X(C)$ such that $X_{m, n}(C)$ is a copy of $C_{m, n}$, that is there are bijections

$$
F(C)_{m, n}: X_{m, n}(C) \widetilde{\rightarrow} C_{m, n} \quad m, n \in \mathbb{N}
$$

Proposition 2. (cf. [1]) It holds that

$$
C^{\circ}=\widetilde{F}(C)(\operatorname{pict}(X(C)))
$$

where $\widetilde{F}(C)$ is the canonical extension of $F(C)$ granted from Proposition 1.
Remark. C° is the generalized Kleene-star of Simplot(cf. [5]).
The present framework enables us to speak of codes in a quite natural way.
In the 1-dimensional case, for an alphabet A, the subset Y of A^{*} is a code if the canonical monoid morphism $h: Y^{*} \rightarrow A^{*}$ induced by the canonical injection $Y \rightarrow A^{*}$ is injective.

Similarly, $C \subseteq \operatorname{pict}(X)$ is a picture code whenever the canonical morphism of DR-monoids induced by the function

$$
F(C): X(C) \rightarrow \operatorname{pict}(X)
$$

is injective.
Manifestly, C can not contain any element of the units e, f.

Example 1. Let $X=\{a, b, c\}$ with $\operatorname{rank}(a)=(1,1), \operatorname{rank}(b)=(1,2), \operatorname{rank}(c)=$ $(2,1)$. Then the set $C=\left\{\binom{a a}{b},\binom{a}{a} c\binom{a}{a}, b\right\}$ is a code.

Moreover, the valuation morphism $\operatorname{val}_{M}: \operatorname{pict}(M) \rightarrow M$ associated with a DR-monoid M, is the unique extension of the identity function $i d: M \rightarrow M$ (cf. [2]).

For instance, if $m, m^{\prime} \in$ pict $_{1,2}(M)$ and $m^{\prime \prime} \in$ pict $_{2,1}(M)$, then $v a l_{M}$ sends the picture

m	$m^{\prime \prime}$
m^{\prime}	

of pict $_{2,3}(M)$ to the element $\left(m\left({ }^{\mathrm{V}} m^{\prime}\right)(h) m^{\prime \prime}\right.$ of $M_{2,3}$.
In particular for $M=\operatorname{pict}(X)$ we have the morphism of DR -monoids $\mathrm{val}_{X}:$ $\operatorname{pict}(\operatorname{pict}(X)) \rightarrow \operatorname{pict}(X)$.

Given $p \in \operatorname{pict}(X)$, any picture $\mathbf{p} \in \operatorname{val}_{X}^{-1}(p)$ is called a partition of p. For instance

is a partition of the picture

Given a partition \mathbf{p} of a picture $p \in \operatorname{pict}(X)$ we say that $r \in \operatorname{pict}(X)$ belongs to \mathbf{p} if r is a piece of \mathbf{p}.

Apparently, if $C \subseteq \operatorname{pict}(X)$ is a code, every element of C° has a single partition and this fact is also analogous to the word case. Indeed, another equivalent definition of word code is the following.

Let A be an alphabet. A subset Y of the free monoid A^{*} is a code over A if for all $k, l \geqslant 1$ and $y_{1}, \ldots, y_{k}, y_{1}^{\prime}, \ldots, y_{l}^{\prime} \in Y$ the condition $y_{1} \ldots y_{k}=y_{1}^{\prime} \ldots y_{l}^{\prime}$ implies $k=l$ and $y_{i}=y_{i}^{\prime}$ for $i=1, \ldots, k$.In other words, a set Y is a (word) code if any word in Y^{+}has a unique factorization in words in Y (cf. [3]).

Next we have
Proposition 3. (cf. [1]) Consider, a DR-submonoid M of $\operatorname{pict}(X)$ and let

$$
\bar{M}=(M-e)-f
$$

Then M has a minimum, with respect to inclusion, set of generators

$$
C(M)=\bar{M}-(\bar{M}(h) \bar{M} \cup \bar{M} \ominus \bar{M}) .
$$

Proposition 4. (cf. [1]) The minimum set of generators of a free $D R$-submonoid M of pict (X), is a picture code.

Conversely for any picture code $C \subseteq \operatorname{pict}(X), C^{\circ}$ is a free $D R$-submonoid of $\operatorname{pict}(X)$ and its minimum set of generators is again C.

If M is a free DR -submonoid of $\operatorname{pict}(X)$, then we say that $C(M)$ is the basis of M.

In the sequel we are going to define some properties of DR-submonoids of pict (X).

We say that a DR-submonoid M of $\operatorname{pict}(X)$ is horizontally stable (HS) whenever for all $a \in \operatorname{pict}_{m, n_{1}}(X), b \in \operatorname{pict}_{m, n_{2}}(X), c \in \operatorname{pict}_{m, n_{3}}(X)$ it holds

$$
a \in M_{m, n_{1}}, a(h) b \in M_{m, n_{1}+n_{2}}, b(h) c \in M_{m, n_{2}+n_{3}}, c \in M_{m, n_{3}} \Rightarrow b \in M_{m, n_{2}} .
$$

M is said to be vertically stable (VS) whenever its transpose M^{T} is horizontally stable, that is for all $a \in \operatorname{pict}_{m_{1}, n}(X), b \in \operatorname{pict}_{m_{2}, n}(X), c \in \operatorname{pict}_{m_{3}, n}(X)$ it holds
$a \in M_{m_{1}, n}, a(\vee) b \in M_{m_{1}+m_{2}, n}, b\left(\mathcal{V} c \in M_{m_{2}+m_{3}, n}, c \in M_{m_{3}, n} \Rightarrow b \in M_{m_{2}, n}\right.$. M is said to be circularly stable (CS) whenever for all $r \in \operatorname{pict}_{m_{1}, n_{1}}(X), s \in$ $\operatorname{pict}_{m_{1}, n_{2}}(X), t \in \operatorname{pict}_{m_{2}, n_{2}}(X), u \in \operatorname{pict}_{m_{2}, n_{1}}(X)$

r	s
u	t

(figure 1)
it holds

$$
\begin{gathered}
r \text { (h) } s \in M_{m_{1}, n_{1}+n_{2}}, s\left(\mathrm{~V} t \in M_{m_{1}+m_{2}, n_{2}}, u \text { (h) } t \in M_{m_{2}, n_{1}+n_{2}}, r\left(\mathrm{~V} u \in M_{m_{1}+m_{2}, n_{1}}\right.\right. \\
\text { implies } \\
r \in M_{m_{1}, n_{1}}, s \in M_{m_{1}, n_{2}}, t \in M_{m_{2}, n_{2}}, u \in M_{m_{2}, n_{1}} .
\end{gathered}
$$

Finally, M is said to be stable if it is simultaneously (HS), (VS), and (CS).
Now we state
Theorem 1. (cf. [1]) A DR-submonoid M of $\operatorname{pict}(X)$ is free if and only if it is stable.

Example 2. A DR-submonoid M of pict (X) fulfilling both (HS) and(VS) may not be free. Take for instance the monadic alphabet $X=\{a, b, c, d, g, h\}$,

$$
C=\left\{a b, g h, c, d,\binom{a}{d},\binom{b}{g},\binom{c}{h}\right\}
$$

and $M=C^{\circ}$.
M is $(H S)+(V S)$ but fails to be free since the picture

$$
\binom{a b c}{d g h}
$$

has two distinct partitions in elements of C.
The reason why M is not free is because it is not (CS). Indeed

$$
a b c \in M_{1,3}, d g h \in M_{1,3},\binom{a}{d} \in M_{2,1},\binom{b c}{g h} \in M_{2,2}
$$

while $a \notin M_{1,1}$.

We close this section by constructing the DR-submonoid which is generated by a DR-set $C \subseteq \operatorname{pict}(X)$.

The powers of C are inductively defined by

$$
\begin{gathered}
C^{1}=C \\
C^{k}=\left(\bigcup_{i=1}^{k-1} C^{i}(\curvearrowleft) C^{k-i}\right) \cup\left(\bigcup_{j=1}^{k-1} C^{j}\left(\mathrm{~V} C^{k-j}\right)\right.
\end{gathered}
$$

and it holds

$$
C^{\circ}=E \cup F \cup C^{1} \cup C^{2} \cup \ldots
$$

For example, if $C=\left\{a a,\binom{a}{a}\right\}, \operatorname{rank}(a)=(1,1)$, then
and

$$
C^{2 k}=\left\{p \in a^{\circ} / \operatorname{rank}(p)=(m, n), m \cdot n=4 k\right\}
$$

for all $k \geqslant 1$.
Then

$$
C^{\circ}=\left\{p \in a^{\circ} / \operatorname{rank}(p)=(m, n), m \text { even or } n \text { even }\right\}
$$

3 Prefix picture sets

Now we recall some known facts about prefix word codes that we are going to study into the framework of pictures.

Let A be an ordinary alphabet and Y a subset of A^{*}. Y is said to be prefix if for all $y, y^{\prime} \in Y, u \in A^{*}$

$$
y u=y^{\prime} \quad \text { implies } \quad u=1
$$

Suffix subsets of A^{*} are defined dually.
Proposition 5. (cf. [3]) Any prefix (suffix) set of words $Y \subseteq A^{*}-\{1\}$ is a code.

Furthermore, let M be a monoid and N a submonoid of M.
Then N is right-unitary (in M) if for all $u, v \in M$

$$
u, u v \in N \Rightarrow v \in N
$$

Left-unitarity is obtained dually.
Next important result holds.

Proposition 6. (cf. [3]) A submonoid M of A^{*} is right-unitary (resp. leftunitary) if and only if its minimal set of generators is a prefix code(resp. suffix code).

In particular, a right-unitary (left-unitary) submonoid of A^{*} is free.
From now on, we assume that X is finite monadic DR-alphabet, i.e. $X=$ $X_{1,1}$ and $X_{m, n}=\emptyset$ for $(m, n) \neq(1,1)$.

Every element $r \in \operatorname{pict}(X)$ can be written as

$r=$| $r_{N W}$ | r_{N} | $r_{N E}$ |
| :---: | :---: | :---: |
| r_{W} | r_{c} | r_{E} |
| $r_{S W}$ | r_{S} | $r_{S E}$ |

with $r_{c}, r_{k}, r_{i j} \in \operatorname{pict}(X), \quad k, i, j \in\{N, S, E, W\}$ of suitable rank.
We say that

- $r_{N W}, r_{W}, r_{S W}$ lie on the western border of r
- $r_{S W}, r_{S}, r_{S E}$ lie on the southern border of r
- $r_{N E}, r_{E}, r_{S E}$ lie on the eastern border of r
- $r_{N W}, r_{N}, r_{N E}$ lie on the northern border of r
- r_{c} lies in the center of r.

We are ready now to extend the notion of prefix sets.

1. The set $C \subseteq \overline{\operatorname{pict(X)}}$ is said to be North-West prefix (NW-prefix for short) if for all $r, r^{\prime} \in \overline{\operatorname{pict}(X)}, s, s^{\prime}, t, t^{\prime} \in \operatorname{pict}(X)$ of suitable rank such that

$$
r s,\binom{r}{t} \in C^{\circ}
$$

it holds
(hp) if $r^{\prime} s^{\prime} \in C$ belongs to a partition of $r s$ so that r^{\prime} lies on the eastern border of r and s^{\prime} lies on the western border of s

then s^{\prime} is a unit element, i.e. (for $\left.\operatorname{rank}\left(r^{\prime} s^{\prime}\right)=(m, n)\right) s^{\prime}=e_{m}$
(vp) if $\binom{r^{\prime}}{t^{\prime}} \in C$ belongs to a partition of $\binom{r}{t}$ so that r^{\prime} lies on the southern border of r and t^{\prime} lies on the northern border of t, i.e.

$$
\text { then } \left.t^{\prime} \text { is a unit element, i.e. (for } \operatorname{rank}\left(\binom{r^{\prime}}{t^{\prime}}\right)=(m, n)\right) t^{\prime}=f_{n} \text {. }
$$

We define analogously $S E-, N E$ - and $S W$-prefix subsets of $\overline{\operatorname{pict}(X)}$.
2. The set $C \subseteq \operatorname{pict}(X)$ with $C \cap(e \cup f) \neq \emptyset$ is said to be $N W$ - $(S E-N E$ and $S W-$-) prefix if

$$
e_{m} \in C \Rightarrow C=\left\{e_{m}\right\} \quad \text { and } \quad f_{n} \in C \Rightarrow C=\left\{f_{n}\right\} \quad \text { for all } m, n \in \mathbb{N}
$$

Moreover, a DR-submonoid M of $\operatorname{pict}(X)$ is $N W$-unitary if for all $r \in$ $\operatorname{pict}_{m, n}(X), s \in \operatorname{pict}_{m, n^{\prime}}(X), t \in \operatorname{pict}_{m^{\prime}, n}(X)$

$$
\begin{equation*}
r s,\binom{r}{t} \in M \quad \text { implies } \quad r, s, t \in M \tag{1}
\end{equation*}
$$

We define $N E-, S W$-, $S E$-unitary DR-submonoids of $\operatorname{pict}(X)$ in a similar manner.

Remark.

1. i) For $r^{\prime} \in \overline{C^{\circ}}, r^{\prime} s^{\prime} \in C\left(r^{\prime}, s^{\prime} \in \operatorname{pict}(X), \operatorname{rank}\left(r^{\prime}\right)=(m, n)\right)$ and for $C \subseteq \overline{\operatorname{pict}(X)} N W$-prefix, we get from the definition that $s^{\prime}=e_{m}$.
ii) For $r^{\prime} \in \overline{C^{\circ}},\binom{r^{\prime}}{t^{\prime}} \in C\left(r^{\prime}, s^{\prime} \in \operatorname{pict}(X), \operatorname{rank}\left(r^{\prime}\right)=(m, n)\right)$ and $C \subseteq \overline{\operatorname{pict}(X)} N W$-prefix, we get from the definition that $t^{\prime}=f_{n}$.
By i) and ii) we understand that every $N W$-prefix subset of $\operatorname{pict}(X)$ is simultaneously horizontally- and vertically-prefix respectively. Consequently our notion of $N W$-prefix (resp. $S E$-prefix) is a natural generalization of prefix (resp. suffix) word sets.
2. i) For $s=e_{m}$, (1) gives

$$
r,\binom{r}{t} \in M \quad \text { implies } \quad t \in M
$$

ii) For $t=f_{n}$, (1) gives

$$
r, r s \in M \quad \text { implies } \quad s \in M .
$$

By i) and ii) we understand that every $N W$-unitary DR-submonoid M of $\operatorname{pict}(X)$ is simultaneously horizontally- and vertically-unitary respectively. Consequently, our notion of $N W$-unitary (resp. $S E$-unitary) is a natural generalization of word right-unitary (resp. left-unitary) monoids.

Proposition 7. Let M be a $D R$-submonoid of $\operatorname{pict}(X)$. Then
M NW-unitary implies that M is free.

Proof. If $r, r s, s u, u \in M \Rightarrow r, r s \in M \Rightarrow s \in M$ and M is (HS).
We prove the vertical stability of M in a similar manner.
Finally, let $r s, t u,\binom{r}{t},\binom{s}{u} \in M$. Since $r s,\binom{r}{t} \in M \Rightarrow r, s, t \in M$. But $t, t u \in M \Rightarrow u \in M$. Therefore, M is circularly stable.

According to Theorem 1, since M is stable, it is free.
In order to prove that an $N W$-prefix set $C \subseteq \overline{\operatorname{pict}(X)}$ is a code, we need the following:

Theorem 2. If $C \subseteq \overline{\operatorname{pict}(X)}$ is $N W$-prefix, then C° is $N W$-unitary $D R$ submonoid of pict (X).

Conversely, if M is an $N W$-unitary $D R$-submonoid of pict (X), then its basis $C(M)$ is an $N W$-prefix set and $C(M) \subseteq \overline{\operatorname{pict}(X)}$.
Proof." $\Rightarrow "$ Let $C \subseteq \overline{\operatorname{pict}(X)} N W$-prefix and $r s,\binom{r}{t} \in C^{\circ}$.
If $r \notin C^{\circ}$ or $s \notin C^{\circ}$, then there is $r^{\prime} s^{\prime} \in C\left(r^{\prime}, s^{\prime} \in \overline{\operatorname{pict}(X)}, \operatorname{rank}\left(r^{\prime}\right)=\right.$ $(m, n))$ in the partition of $r s$ such that r^{\prime} lies on the eastern border of r and s^{\prime} lies on the western border of s :

But since C is prefix, we get $s^{\prime}=e_{m}$, which is not true by hypothesis. Thus $r, s \in C^{\circ}$.
Similarly we prove that also $t \in C^{\circ}$, and therefore C° is $N W$-unitary.
$" \Leftarrow "$ Conversely let M be an $N W$-unitary DR-submonoid of $\operatorname{pict}(X)$. Then M is free and its basis $C(M)$ is a code. Thus $C(M) \subseteq \overline{\operatorname{pict}(X)}$.
Now, let $r s,\binom{r}{t} \in M=C(M)^{\circ}, r^{\prime} s^{\prime} \in C(M)\left(r, r^{\prime} \in \overline{\operatorname{pict}(X)}, \operatorname{rank}(r)=\right.$ $(m, n))$ with $r^{\prime} s^{\prime}$ belonging to a partition of $r s$ so that r^{\prime} lies on the eastern border of r and s^{\prime} lies on the western border of s :

Since M is $N W$-unitary $r, s, t \in M$.
If $s^{\prime} \neq e_{m}$ then since $r, s \in C^{\circ}$, there are $r_{S E}^{\prime}, s_{S W}^{\prime} \subseteq \overline{\operatorname{pict}(X)}$ of r^{\prime} and s^{\prime} respectively, such that $r_{S E}^{\prime}$ lies on the eastern border of a certain $r^{\prime \prime} \in C(M)$ which belongs to a partition of r and $s_{S W}^{\prime}$ lies on the western border of a certain $s^{\prime \prime} \in C(M)$ which belongs to a partition of s. Then rs has two different partitions of elements of $C(M)$ which is not true since $C(M)$ is a code. Therefore $s^{\prime}=e_{m}, r, s, t \in C^{\circ}$ and $r^{\prime} \in C$.

Similarly we prove the vertical prefix property (vp) of $N W$-prefix sets.

Remark. Although Theorem 2 that precedes is the picture analogue of Proposition 6, its proof is totally different because of the fact that a picture may be constructed by its pixels horizontally or vertically.

Corollary 1. If $C \subseteq \overline{\operatorname{pict}(X)}$ is $N W$-prefix, then C is a picture code.
Proof. If C is NW-prefix, then by Theorem $2 C^{\circ}$ is an NW-unitary DRsubmonoid of pict (X). By Proposition 7 we deduce that C° is free, and finally by Proposition 4 we get that C is a picture code.

Example 3. Let $X=\{a, b, c, d, g, t, s, u\}$ and $C \subseteq \overline{\operatorname{pict}(X)} N W$-prefix. Then

$$
a, b,\binom{c}{c}, g u,\left(\begin{array}{c}
c d \\
c g \\
t t
\end{array}\right),\binom{b s}{d s} \in C^{\circ} \quad \text { implies } \quad d, g, u, t t,\binom{s}{s} \in C^{\circ}
$$

Indeed, since $\left(\begin{array}{l}a b \\ c d \\ c g \\ t t\end{array}\right),\left(\begin{array}{c}a b s \\ c d s \\ c g u\end{array}\right) \in C^{\circ}$ and C° is NW-unitary, we get $\left(\begin{array}{c}a b \\ c d \\ c g\end{array}\right), t t,\left(\begin{array}{c}s \\ s \\ u\end{array}\right) \in$ C°.

But

$$
a b,\left(\begin{array}{l}
a b \\
c d \\
c g
\end{array}\right) \in C^{\circ} \Rightarrow\binom{c d}{c g} \in C^{\circ}
$$

and since $\binom{c}{c} \in C^{\circ}$ we get $\binom{d}{g} \in C^{\circ}$.
Also,

$$
\binom{\binom{b s}{d s}}{g u}=\left(\begin{array}{l}
b \\
d \\
g
\end{array}\right)\left(\begin{array}{l}
s \\
s \\
u
\end{array}\right)
$$

and since C° is circularly stable, we get $\binom{b}{d}, g,\binom{s}{s}, u \in C^{\circ}$.
Finally,

$$
b,\binom{b}{d} \in C^{\circ} \Rightarrow d \in C^{\circ}
$$

That is $d, g, u, t t,\binom{s}{s} \in C^{\circ}$.

4 Properties of prefix picture sets

In this section we list a series of remarkable properties that the prefix picture sets have.
Proposition 8. Let X be a finite monadic $D R$-alphabet and let $C \subseteq \overline{\operatorname{pict}(X)}$ be $N W$-prefix. Then

1. $a \in \overline{C^{\circ}},$| a | b |
| :--- | :--- |
| c | d |$\in C$ implies bs $\notin C^{\circ}$ and $\binom{c}{t} \notin C^{\circ}$ for all $s, t \in$ pict (X) of suitable rank.

i) $\binom{a b}{t} \in C$ and $a \in \overline{C^{\circ}}, b s \in C^{\circ}(b, s, t \in \operatorname{pict}(X), \operatorname{rank}(a)=$ (m, n)) imply $b=e_{m}, t=f_{n}, s \in C^{\circ}$.
ii) $\binom{a}{c} s \in C \quad$ and $a \in \overline{C^{\circ}},\binom{c}{t} \in C^{\circ}(c, s, t \in \operatorname{pict}(X), \operatorname{rank}(a)=$ (m, n) imply $c=f_{n}, s=e_{m}, t \in C^{\circ}$.
2. cs $\in C$ and $b,\binom{b c}{t} \in C^{\circ}(\operatorname{rank}(c)=(m, n), c \in \overline{\operatorname{pict}(X)}, s, t \in$ $\operatorname{pict}(X))$ imply $s=e_{m}, t \in C^{\circ}$.
i) $c s \in C$ and $\binom{c}{t} \in C^{\circ}(c \in \overline{\operatorname{pict}(X)}, s, t \in \operatorname{pict}(X), \operatorname{rank}(c)=$ (m, n)) imply $s=e_{m}, t \in C^{\circ}$.
ii) $c \in \overline{C^{\circ}}, c s \in C(s \in \operatorname{pict}(X), \operatorname{rank}(c)=(m, n))$ imply $s=e_{m}$.
3. the transpose analog of 2.
4. $\binom{c d}{t} \in C, a, b, c,\binom{b}{d} s \in C^{\circ}(d \in \overline{\operatorname{pict}(X)}, \quad s, t \in \operatorname{pict}(X))$ with $\operatorname{rank}(a)=(m, n), \operatorname{rank}(b)=\left(m, n^{\prime}\right), \operatorname{rank}(c)=\left(m^{\prime}, n\right), \operatorname{rank}(d)=\left(m^{\prime}, n^{\prime}\right)$ imply $c=e_{m^{\prime}}, t=f_{n^{\prime}}, a=e_{m}, s \in C^{\circ}$.
5. the transpose analog of 4.
6. $b, c, s, t,\binom{b}{d} s,\binom{c d}{t} \in C^{\circ}(d \in \overline{\text { pict }(X)})$ with $\operatorname{rank}(b)=(m, n), \operatorname{rank}(c)=$ $\left(m, n^{\prime}\right), \operatorname{rank}(d)=(m, n), \operatorname{rank}(t)=\left(m^{\prime \prime}, n+n^{\prime}\right)$ and $m=\lambda m^{\prime}$ or $m^{\prime}=$ $\lambda m\left(\lambda \in \mathbb{N}^{*}\right)$ imply $d \in C^{\circ}$.

Proof. We only prove properties 1,4 and 6 . The proofs of $2,3,5$ are similar.

1. Since C° is $N W$-unitary and $\binom{a b}{c d}, a b s \in C^{\circ}$, we get $a b, c d, s \in C^{\circ}$. By $a, b \in \overline{\operatorname{pict(X)}}$ we get $a b, c d \in \overline{C^{\circ}}$, i.e. $\binom{a b}{c d} \in C \cap \overline{C^{\circ}} \vee \overline{C^{\circ}}$ which is not true since C is a code. Therefore $b s \notin C^{\circ}$ and similarly we prove that $\binom{c}{t} \notin C^{\circ}$ for all $t \in \operatorname{pict}(X)$ of suitable rank.
i) By $\binom{a b}{t} \in C$ and $a b s \in C^{\circ}$ we deduce that $a b, s, t \in C^{\circ}$. But $a \in \overline{C^{\circ}}$ and $a b \in C^{\circ}$, i.e. $b \in C^{\circ}$. Let $\operatorname{rank}(b)=\left(m, n^{\prime}\right)$.
If $t \neq f_{n+n^{\prime}}$, then $\binom{a b}{t} \in C \cap \overline{C^{\circ}} \stackrel{\vee}{ } \overline{C^{\circ}}$, not true.
If $t=f_{n+n^{\prime}}$ and $b \neq e_{m}$ then $\binom{a b}{t}=a b \in C \cap \overline{C^{\circ}}(1) \overline{C^{\circ}}$, not true.
Therefore $t=f_{n+n^{\prime}}$ and $b=e_{m}$, i.e. $n^{\prime}=0$. Thus $t=f_{n}$.
2. By

$$
, \quad \begin{array}{|l|l|l|}
\hline a & b & s \\
\hline c & d & \\
\hline
\end{array} \in C^{\circ}
$$

and C° being $N W$-unitary we get that

$$
\begin{array}{|c|c|}
\hline a & b \\
\hline c & d \\
\hline
\end{array}, s, t \in C^{\circ}
$$

Since $a b,\binom{a b}{c d} \in \overline{C^{\circ}}$ we deduce that $c d \in C^{\circ}$. But $c, c d \in C^{\circ}$ and therefore $d \in \overline{C^{\circ}}$.
If $t \neq f_{n+n^{\prime}}$ then $\binom{c d}{t} \in C \cap \overline{C^{\circ}} \stackrel{\rightharpoonup}{ } \overline{C^{\circ}}$, a contradiction because C is a code.
If $t=f_{n+n^{\prime}}$ and $c \neq e_{m^{\prime}}$ then $c d \in C \cap \overline{C^{\circ}}(h) \overline{C^{\circ}}$, not true.
We deduce that $t=f_{n+n^{\prime}}$ and $c=e_{m^{\prime}}$, i.e. $n=0, t=f_{n^{\prime}}, a=e_{m}$ and $s \in C^{\circ}$.
6. i) Let $m^{\prime}=\lambda m$ and $d \notin C^{\circ}$. Then the picture

$$
p_{1}=(((\underbrace{c \vee \cdots \vee(\mathrm{~V} c)}_{\lambda \text { times }}(\mathrm{h}) b) \mathrm{\rightharpoonup})\binom{c d}{t} \odot \underbrace{t(\mathrm{~V} \cdots \mathrm{~V} t}_{(\lambda+1) m-1 \text { times }})(\mathrm{M})(\underbrace{s \vee \cdots \mathrm{~V}) s}_{m^{\prime \prime}+1 \text { times }})
$$

coincides with the picture

But since $d \notin C^{\circ}$, the above picture will have two different partitions of elements of C, contradiction because C is a code.
ii) If $m=\lambda m^{\prime}$ then we proceed as in case i) by replacing p_{1} and p_{2} by
and

Example 4. $A D R$-submonoid $C^{\circ} \subseteq \operatorname{pict}(X)$ which satisfies the properties 1-6, may not be $N W$-unitary. Take for instance, $X=\left\{a, b, c, d, s_{1}, s_{2}, g, h, t_{1}, t_{2}\right\}$ and

$$
C=\left\{\binom{a}{a}, b b, s_{1}, d,\binom{c c s_{2}}{g h s_{2}}, c c,\binom{d g}{t_{1} t_{1}},\binom{h}{t_{2}}\right\} .
$$

C° satisfies 1-6 but is not NW -unitary, because although $\left(\begin{array}{c}a b b \\ a c c \\ d g h \\ t_{1} t_{1} t_{2}\end{array}\right),\left(\begin{array}{c}a b b s_{1} \\ a c c s_{2} \\ d g h s_{2}\end{array}\right) \in$ C°, the element $\left(\begin{array}{c}a b b \\ a c c \\ d g h\end{array}\right) \notin C^{\circ}$.

Acknowledgement. The author would like to thank the referees for their constructive suggestions and comments.

References

[1] S. Bozapalidis, A. Grammatikopoulou, Picture Codes, RAIRO:ITA(to appear)
[2] S. Bozapalidis, A. Grammatikopoulou, Recognizable Picture Series, WATA 2004 Proceedings, Journal of Automata and Combinatorics(to appear)
[3] J. Berstel, D. Perrin, Theory of Codes, Academic Press,New York,1985
[4] D. Giammarresi, A. Restivo, Two-Dimensional Languages, Handbook of Formal Languages, Vol. 3 Beyond Words,215-267, G. Rozenberg A. Salomaa Eds, Springer, 1997
[5] D. Simplot, A Characterization of Recognizable Picture Languages by Tilings by Finite Sets, Theoretical Computer Science 218, 2(1999), 297-323

