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Abstract. The class of languages obtained by solving non-deterministic
rational program schemes is shown to be closed under linear tree homo-
morphisms and inverse alphabetic tree homomorphisms. Moreover, for
a given such language F and an infinite regular tree R we can decide
whether or not F is finite and R ∈ F . These results are also valid for
Buchi tree languages.

1 INTRODUCTION

In 1977 Arnold and Nivat [AN1] showed that the set of trees computed by a
non-deterministic recursive program scheme (NRvePS) is just a component of
the greatest solution of the monotonic operator canonically associated with this
scheme. The various semantics of such schemes have been investigated in a series
of papers (cf. [Na], [ANN], [Po], [AN2], [AN3]). Here we try a linguistic study
of languages of infinite trees determined by non-deterministic rational program
schemes which are the first order variant of NRvePS’s above.

Let Γ be a ranked alphabet and Xn = {x1, . . . , xn} a set of variables. As
usual, TΓ (Xn), T∞Γ (Xn) stand for the sets of finite, infinite trees respectively
over Γ and Xn.

A non-deterministic rational program scheme (NRPS) is a system P =
〈Γ, Xn, Σ, x1〉 where Γ, Xn are as above, x1 is the starting variable and Σ is
a system of equations of the form

xi = Li, 1 ≤ i ≤ n

with L1, . . . , Ln finite subsets of TΓ (Xn).
The syntactic ∞-tree languages defined by P are the x1-component of the

greatest OI-solution of the above system. Such languages can also be obtained
as ∞-behaviours of top down tree automata using the D3-acceptance mode in
the terminology of [NS].

Notice that the NRPS’s and the rational logic programs of Kowalski (cf. [Ko])
are syntactically equivalent objects (cf. [NS]).

Two kinds of results are established:

– Decision problems.
1. For a given syntactic language F we can decide whether F is finite or

not. If it is finite, then F consists exclusively of regular trees.
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2. Given a syntactic language F ⊆ T∞Γ and a regular infinite tree R, we
van decide whether or not R ∈ F .

– Closure properties.
3. The class STL(Γ ) of syntactic tree languages over the alphabet Γ , is the

smallest class containing the finite sets of finite trees and closed under
OI-substitution and OI-STAR.

4. STL(Γ ) is closed under linear tree homomorphisms and inverse alpha-
betic tree homomorphisms.

5. The branches of a syntactic tree language, form a syntactic language, as
well.

The techniques displayed to achieve the previous results are also valid for the
case of Büchi tree automata. Hence the statements 1) - 5) above hold for Büchi
tree languages also.

An excellent survey on infinite trees can be found in [Th].

2 PRELIMINARIES

Let Γ =
⋃

k≥0

Γk be a ranked alphabet and X = {x1, x2, . . .} a set of variables.

We put Xn = {x1, . . . , xn}, X0 = ∅. Also let Ω be a 0-ranked symbol and set
N0 = {1, 2, ...}.

A tree is a partial function T : N∗0 → Γ ∪ {Ω} ∪Xn whose domain is prefix
closed and has the additional properties:

- for a ∈ N∗0, if T (a) ∈ Γ0 ∪{Ω}∪Xn then T (ai) is not defined for all i ∈ N0.
- for a ∈ N∗0, if T (a) ∈ Γk (k ≥ 1) then T (ai) is defined iff 1 ≤ i ≤ k.
Denote by T∞Γ,Ω(Xn) the so obtained set and by TΓ,Ω(Xn) the set of all

trees with finite domain. For T, T ′ ∈ T∞Γ,Ω(Xn) we write T ≤Ω T ′ whenever
Dom(T ) ⊆ Dom(T ′) and for any a ∈ Dom(T ) such that T (a) 6= Ω we have
T (a) = T ′(a). (T∞Γ,Ω(Xn),≤Ω) is an ω-complete set.

The basic operation on trees is substitution. Let T ∈ T∞Γ,Ω(Xn) and put

Vi(T ) = {a | a ∈ N∗0, T (a) = xi} , 1 ≤ i ≤ n

be the set of all vertices of T labelled by xi (1 ≤ i ≤ n) and consider families−→
S i = (Si

a)a∈Vi(T ) of trees in T∞Γ,Ω(Xn) (1 ≤ i ≤ n). Then

T
[−→
S 1/x1, . . . ,

−→
S n/xn

]
or just T

[−→
S 1, . . . ,

−→
S n

]

is the tree whose domain is

(Dom (T )− V (T )) ∪




⋃

a∈Vi(T )

1≤i≤n

αDom(Si
a)



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with V (T ) =
⋃

1≤i≤n

Vi (T ). Moreover for all β ∈ N∗0 we have

T
[−→
S 1, . . . ,

−→
S n

]
(β) = T (β), ifβ ∈ Dom(T )− V (T )

= Si
a(γ), if β = αγ, α ∈ Vi(T ), γ ∈ Dom(Sα).

Associativity holds for the above vectorial tree substitution.
Now, given languages of infinite trees L,A1, . . . ,An ⊆ T∞Γ,Ω(Xn) we define

L [A1, . . . ,An]OI =
{

T
[−→
S i, . . . ,

−→
S n

]
| T ∈ L,

−→
S i ∈ AVi(T )

i , 1 ≤ i ≤ n
}

.

A straightforward argument shows that

Proposition 1. OI-substitution of infinite tree languages is associative.

3 SYNTACTIC LANGUAGES

Let Γ be a finite ranked alphabet and Xn = {x1, . . . , xn} a set of variables and
consider the system

(Σ) xi = Li , Li ⊆ TΓ (Xn) , 1 ≤ i ≤ n.

We say that (A1, . . . ,An) ∈ P(T∞Γ )n is an OI-solution of (Σ) whenever

Ai = Li [A1, . . . ,An]OI , 1 ≤ i ≤ n.

We say that the sequence t = (tk) of trees in TΓ (Xn) is an xi-th OI-expansion
of (Σ) whenever

t0 ∈ Li, tk+1 ∈ tk [L1, . . . , Ln]OI .

EXPOI(Σ, xi) stands for the so defined set.
We put

tΩ = (tk,Ω)

where tk,Ω = tk [Ω/x1, . . . , Ω/xn]. tΩ is an increasing sequence in T∞Γ,Ω and thus
suptΩ exists and is denoted by t̂, i.e.

t̂ = sup tΩ .

Theorem 1. The n-tuple

(s) (F(Σ, x1), . . . ,F(Σ, xn)) ∈ P(T∞Γ )n,

where F(Σ, xi) =
{
t̂ | t ∈ EXPOI(Σ, xi)

}
is the greatest, by inclusion, OI-

solution of (Σ).
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A non deterministic rational program scheme (NRPS) is a 4-tuple P =
〈Γ, Xn, Σ, x1〉, where Γ,Xn are as above, (Σ) is a system whose all right-hand
side members are finite subsets of TΓ (Xn) and x1 is the starting variable. The
language computed by P is the first component of the greatest OI-solution of
(Σ).

We say that F ⊆ T∞Γ is a syntactic language whenever it is computed by a
NRPS P. STL (Γ ) denotes the class of syntactic languages over Γ.

Example 1. The whole T∞Γ is a syntactic language since it is the greatest
OI-solution of the equation

x = {f (x, . . . , x) | f ∈ Γk, k ≥ 0} .

The presence of variables in the right-hand side members of a system does
not affect the formalization of its maximal solution. Indeed, for a given system

(Σ) xi = Li , 1 ≤ i ≤ n

with L1, . . . , Ln finite subsets of TΓ (Xn), let us write i → j whenever xj ∈ Li.
Then

Lemma 1. The systems (Σ) above and

(Σ′) xi = (Li −Xn) ∪




⋃

i
k→j

(Lj −Xn)




have the same greatest OI-solution.

The NRPS’s P = 〈Γ, Xn, Σ, x1〉 and P ′ = 〈Γ, Xm, Σ′, x1〉 are said to be
equivalent whenever they compute the same language: F(Σ, x1) = F(Σ′, x1).

Proposition 2. Given a NRPS P = 〈Γ, Xn, Σ, x1〉 we can effectively construct
an equivalent P ′ = 〈Γ, Xm, Σ′, x1〉 satisfying the condition

L′j ⊆ TΓ (Xm)−Xm , j = 1, . . . ,m.

The graph associated with a system

(Σ) xi = Li , Li ⊆ TΓ (Xn) , 1 ≤ i ≤ n

denoted by Gr(Σ) has Xn∪{#} as set of vertices while we draw an edge xi → xj

(resp. xi → #) whenever there is a tree t ∈ Li in which the variable xi occurs
(resp. t ∈ Li ∩ TΓ ).
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It is not hard to see that the language computed by P = 〈Γ,Xn, Σ, x1〉 is
non-empty if and only if

(c)





for every path
x1 → xi1 → . . . → xip

→ xi

in Gr(Σ) with i1, . . . , ip, i distinct elements of
{2, 3, . . . , n} it holds Li 6= ∅.

From now on, without any loss of generality, we may deal with NRPS P =
〈Γ, Xn, Σ, x1〉 whose corresponding system

(Σ) xi = Li , 1 ≤ i ≤ n

is such that

i) L1, . . . , Ln are finite subsets of TΓ (Xn)−Xn and
ii) the condition (c) above is satisfied.

Call P = 〈Γ, Xn, Σ, x1〉 deterministic whenever all right-hand side members
of (Σ) are singletons

(Σ) xi = ti , ti ∈ TΓ (Xn)−Xn , 1 ≤ i ≤ n .

For each i = 1, . . . , n there is just one xi-th OI-expansion, namely

si = (si
k) , si

0 = ti , si
k+1 = ti[s1

k, . . . , sn
k ] .

Therefore
({ŝ1}, . . . , {ŝn}) is the greatest by inclusion OI-solution of (Σ) where(

ŝ1, . . . , ŝn
)

is the least with respect to ≤Ω-solution of (Σ).
We conclude

Proposition 3. If T ∈ Tω
Γ is a regular infinite tree, then the singleton {T} is a

syntactic language.

Proposition 4. Every non-empty syntactic language of Tω
Γ contains at least

one infinite regular tree.

Theorem 2. A finite subset F = {T1, . . . , Tk} of T∞Γ is syntactic if and only if
all the trees T1, . . . , Tk are regular.

Proposition 5. The finiteness problem for syntactic languages is decidable.
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4 KLEENE THEOREM

Let A ⊆ T∞Γ (Xn). The greatest∞-OI-solution of the equation xκ = A is denoted
by A∗,OI,κ and is the greatest (by inclusion) part of T∞Γ (Xn − {xκ}) such that

A∗,OI,κ = A [
x1, . . . , xκ−1,A∗,OI,κ, xκ+1, . . . , xn

]
OI

.

Next theorem confirms that the greatest solution of a system can be obtained
by solving the system step by step.

Theorem 3. Consider the system

(Σn)





x1 = A1

... , Ai ⊆ T∞Γ (Xn) , 1 ≤ i ≤ n.
xn = An

If A∗,OI,n
n is the greatest ∞-OI-solution of the last equation and (F1, . . . ,Fn−1)

is the greatest ∞-OI-solution of the system

(Σn−1)





x1 = A1

[
x1, . . . , xn−1,A∗,OI,n

n

]
OI

...
xn−1 = An−1

[
x1, . . . , xn−1,A∗,OI,n

n

]
OI

then

(s)
(F1, . . . ,Fn−1,A∗,OI,n

n [F1, . . . ,Fn−1]OI

)

is the greatest OI-solution of (Σn).

Next closure properties come by applying the above elimination procedure.

Theorem 4. Suppose A,A1, . . . ,An ∈ STL(Γ ). Then A [A1, . . . ,An]OI ∈ STL(Γ ).

The main result of this section is next Kleene-like theorem.

Theorem 5. STL(Γ ) is the least class of P(T∞Γ ) containing finite languages of
TΓ and closed under OI-substitution and OI-star-operation.

Corollary 1. Consider the system

(Σ) xi = Li , Li ⊆ T∞Γ (Xn) , 1 ≤ i ≤ n

and its OI-greatest solution (F1, . . . ,Fn). If L1, . . . ,Ln are syntactic languages,
then so are F1, . . . ,Fn .
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5 TREE HOMOMORPHISMS AND SYNTACTIC
LANGUAGES

First recall that for two given ranked alphabets Γ and ∆ a homomorphism from
Γ to ∆ is simply a sequence of functions

hκ : Γκ → T∆ (ξ1, . . . , ξκ) , κ = 0, 1, ..

where Ξ = {ξ1, ξ2, . . .} is a set of auxiliary variables, Ξκ = {ξ1, . . . , ξκ} , κ ≥ 0.
The above sequence (hκ)κ≥0 gives rise to a single function

h : TΓ (Xn) → T∆(Xn) , Xn = {x1, . . . , xn}

defined by the inductive formula
- h(xi) = xi , 1 ≤ i ≤ n
- h(c) = h0(c) , c ∈ Γ0

- h (f(t1, . . . , tκ)) = hκ(f) [h(t1)/ξ1, . . . , h(tκ)/ξκ] , f ∈ Γκ, ti ∈ TΓ (Xn), 1 ≤
i ≤ κ.

A homomorphism h from Γ to ∆ is said to be linear whenever for all κ ≥ 1
and f ∈ Γκ the tree hκ(f) is Ξκ-linear (i.e. each variable ξi occurs in hκ(f) at
most once).

Every tree homomorphism h : TΓ (Xn) → T∆(Xn) preserves tree substitu-
tion, that is

h (t [s1, . . . , sn]) = h(t) [h(s1), . . . , (sn)]

for all t, s1, . . . , sn ∈ TΓ (Xn), where the above substitutions take place at the
variables x1, . . . , xn.

We can extend h : TΓ (Xn) → T∆(Xn) to h : T∞Γ,Ω(Xn) → T∞∆,Ω(Xn) by
setting

h(T ) = sup
t≤T

(t), T ∈ T∞Γ,Ω(Xn)

where the above ordering is the syntactic tree ordering described in Section 2.

Theorem 6. If h : T∞Γ,Ω(Xn) → T∞∆,Ω(Xn) is a linear tree homomorphism and
(F1, . . . ,Fn) is the greatest OI-solution of the system

(Σ) xi = Li , Li ⊆ TΓ (Xn) , 1 ≤ i ≤ n

then (h(F1), . . . , h(Fn)) is the greatest OI-solution of the system

(hΣ) xi = h(Li) , 1 ≤ i ≤ n .

Consequently,
F ∈ STL(Γ ) implies h(F) ∈ STL(∆).

In the next section we shall display an example of a non-linear homomorphism
not preserving syntactic languages.
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Actually, syntactic languages are closed under the branching operator. Recall
that the branching alphabet b(Γ ) associated with a ranked alphabet Γ is the
monadic alphabet

b(Γ )0 = Γ0, b(Γ )1 = {[f, i] | f ∈ Γκ, κ ≥ 1 and i = 1, . . . , κ} .

The mapping
br : TΓ (Xn) → P (

Tb(Γ )(Xn)
)

is defined by
- br(a) = {a}, a ∈ Γ0 ∪Xn

- br (f(t1, . . . , tκ)) = [f, 1]br(t1) ∪ · · · ∪ [f, κ]br(tκ).
We state

Theorem 7. If (F1, . . . ,Fn) is the greatest OI-solution of

(Σ) xi = Li, Li ⊆ TΓ (Xn), 1 ≤ i ≤ n

then (br(F1), . . . , br(Fn)) is the greatest solution of the system

br(Σ) xi = br(Li) , 1 ≤ i ≤ n.

Consequently, if T ∈ Tω
Γ is an infinite regular tree, then br(T ) is a syntactic

language of T∞b(Γ ).

Corollary 2. We can decide whether or not a regular tree T ∈ T∞Γ is finite or
not (provided Γ has no 1-ranked symbols, Γ1 = ∅).
Theorem 8. Inverse linear alphabetic homomorphisms preserve ∞-OI-regular
languages.

6 OI-RECOGNIZABILITY

In this section we shall relate syntactic languages with infinite behaviours of tree
automata.

A top-down tree automaton over the ranked alphabet Γ is a 4-tuple

M =(Γ, Q, I, δ)

consisting of a finite ranked alphabet Γ of input symbols, a finite set Q of states,
a set I ⊆ Q of initial states and a finite set

δ ⊆
⋃

κ≥0

Q× Γκ ×Qκ

of transitions.
The behaviour of M is

|M| =
⋃

q∈I

Fq
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where (Fq)q∈Q is the least OI-solution of the system

Σ(M) xq = {f (xq1 , . . . , xqκ
) | (q, f, q1, . . . , qκ) ∈ δ} .

The behaviours of such automata coincide with the class of recognizable tree
languages (cf. [GS]).

The ∞-OI-behaviour of a top-down automaton M is

|M|∞,OI =
⋃

q∈I

F (Σ(M), xq)

where
(
F (Σ(M), xq)q∈Q

)
is the greatest OI-solution of Σ(M). F ⊆ T∞Γ is

said to be ∞-OI-recognizable if it is the ∞-OI-behaviour of a top-down tree
automaton M; ∞-OI-Rec(Γ ) stands for the so defined class.

Proposition 6. The classes STL(Γ ) and ∞−OI −Rec(Γ ) coincide.

Actually the above proposition states that a language is syntactic if and only
if it is D3-recognizable in the terminology of [Sa], [NS].

Hence,

Corollary 3. (cf. [Sa], [NS]) The syntactic subsets of T∞Γ are closed under
intersection.

In order to render more apparent the use of tree runs in the formation of
∞-OI-behaviour of a top-down tree automaton M = (Γ, Q, I, δ) we introduce
the ranked alphabet Q,Qn = Q for n ≥ 0, as well as the product alphabet

Γ ×Q, (Γ ×Q)n = Γn ×Qn, n ≥ 0.

Denote by (loc(M)<γ,q>)<γ,q>∈Γ×Q the greatest ∞-OI-solution of the system

x<γ,q> =
{
< γ, q >

(
x<γ1,qi1>, . . . , x<γκ,qiκ>

) | (q, γ, qi1 , . . . , qiκ) ∈ δ
}

,

〈γ, q〉 ∈ Γ ×Q, and set

loc(M) =
⋃

<γ,q>∈Γ×I

loc(M)<γ,q>.

loc(M) is the local language defined by M.
The composition

T∞Γ
prΓ←− T∞Γx

−∩loc(M)−→ T∞Γ×Q

prQ−→ T∞Q

is by definition the relation runM−→ ; for T ∈ T∞Γ ,

runM(T ) = prQ
(
pr−1

Γ (T ) ∩ loc(M)
)
.

It is easily seen that

|M|∞,OI = {T | runM(T ) 6= ∅} .

275



Proposition 7. For a given top-down automatonM the language runM
(
|M|∞,OI

)
⊆

T∞Q is syntactic.

Also, for any infinite regular tree T ∈ |M|ω,OI , runM(T ) is a syntactic
language of T∞Q .

Corollary 4. Given a syntactic language F ⊆ T∞Γ and a regular tree T ∈ Tω
Γ ,

we can decide whether T ∈ F or not.

A useful pumping lemma can be obtained in this setup. We denote by P∞Γ
the free monoid generated by the trees

f (T1, . . . , Ti−1, x, Ti+1, . . . , Tp) , f ∈ Γp, p ≥ 1, Tj ∈ T∞Γ , j 6= i.

Clearly P∞Γ acts on T∞Γ via substitution at x.

Lemma 2. For every syntactic language F ⊆ T∞Γ , there is a number N > 0 so
that each T ∈ F ∩ Tω

Γ admits a decomposition

T = S1 · S2 · T1 such that S1, S2 ∈ P∞Γ , T1 ∈ Tω
Γ , |S2| > 0 and

S1 (S2)
κ

T1, S1 · Sω
2 ∈ F , κ = 0, 1, . . .

We shall apply this lemma to show non-closure of syntactic languages under
non-linear tree homomorphisms.

Example 2. Consider the ranked alphabets Γ = {f, g} and Γ1 = {f1, g1}
with rank(f) = 2 = rank(g) and rank(f1) = 1 = rank(g1) respectively.

Let h : T∞Γ1
→ T∞Γ be the homomorphism defined by

h(f1) = f(x, x), h(g1) = g(x, x)

and take F = h
(
T∞Γ1

)
and T = h(W ) with

W = f1g1f
2
1 g2

1f3
1 g3

1 . . .

If F was syntactic then by virtue of the pumping lemma above

T = S1 · S2 · T1

with |S2| > 0 and S1(S2)κT1 ∈ F for κ = 0, 1, . . . . But for κ large enough this
is not true.
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7 Büchi ∞-TREE LANGUAGES

A Büchi tree automaton is a system M = (Γ, Q, δ, q0, F ) where (Γ,Q, δ, q0) is a
top-down tree automaton and F ⊆ Q is the set of final states of M.

The behaviour of M, denotes by |M|Büchi, consists of all trees T ∈ T∞Γ such
that there is a run R ∈ runM(T ) such that in every branch W of R there appear
infinitely many final states.

F ⊆ T∞Γ is a Büchi language whenever F = |M|Büchi for some automaton
M.

It is well known that

Theorem 9. (cf. [Ta], [AN4]) F ⊆ T∞Γ is a Büchi language iff it is the first
component of the maximal OI-solution of a system

(Σ) xi = Li, 1 ≤ i ≤ n

with L1, . . . , Ln recognizable subsets of TΓ (Xn).

Given a system
(Σr) xi = Li , 1 ≤ i ≤ n

with L1, . . . , Ln recognizable subsets of TΓ (Xn)−Xn, we can effectively construct
a finite graph Gr(Σr) by taking Xn ∪ {#} as its set of vertices while we draw
an edge xi → xj (resp. xi → #) whenever xj occurs in a tree t ∈ Li (resp.
Li ∩ TΓ (Xn) 6= ∅).

Since Li is recognizable, it is decidable whether the set

Lix
−1
j = {τ | τ ∈ PΓ (Xn), τxj ∈ Li}

is empty or not.
We have the following important result:

Theorem 10. We can decide whether a given Büchi tree language is finite or
not.

Theorem 11. Büchi-tree languages are closed under linear tree homomorhisms
and inverse alphabetic homomorphisms.

Proposition 8. If F ⊆ T∞Γ is a Büchi language then so is br(F) ⊆ T∞b(Γ ).

Let M = (Γ, Q, δ, q0, F ) be a Büchi tree automaton and consider the top
down automaton

M̂q = (Γ ∪XF , Q, δ̂, q), q ∈ Q

where XF = {xp | p ∈ F} and δ̂ = δ ∪ {(xp, p) | p ∈ F}.
Also, let loq(M̂q) be the local set associated with M̂q and

(Σ̂) ξq = loc(M̂q) [ξp/(xp, p)]p∈F .

277



We set
LOC(M) = F(Σ̂, ξq0).

Then prΓ (LOC(M)) = |M|Büchi and the function

RUNM : T∞Γ → P (
T∞Q

)
,

RUNM(T ) = prQ
(
pr−1

Γ (T ) ∩ LOC(M)
)
, T ∈ T∞Γ

preserves Büchi tree languages. Since the non emptiness problem for Büchi tree
languages is decidable, we get

Theorem 12. We can decide whether or not a regular tree T ∈ T∞Γ belongs to
a Büchi language F ⊆ T∞Γ .

References
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