Syntactic ∞ -Tree Languages

Symeon Bozapalidis

Department of Mathematics, Aristotle University of Thessaloniki 54124, Thessaloniki, Greece.

Abstract. The class of languages obtained by solving non-deterministic rational program schemes is shown to be closed under linear tree homomorphisms and inverse alphabetic tree homomorphisms. Moreover, for a given such language \mathcal{F} and an infinite regular tree R we can decide whether or not \mathcal{F} is finite and $R \in \mathcal{F}$. These results are also valid for Buchi tree languages.

1 INTRODUCTION

In 1977 Arnold and Nivat [AN1] showed that the set of trees computed by a non-deterministic recursive program scheme (NRvePS) is just a component of the greatest solution of the monotonic operator canonically associated with this scheme. The various semantics of such schemes have been investigated in a series of papers (cf. [Na], [ANN], [Po], [AN2], [AN3]). Here we try a linguistic study of languages of infinite trees determined by non-deterministic rational program schemes which are the first order variant of NRvePS's above.

Let Γ be a ranked alphabet and $X_n = \{x_1, \ldots, x_n\}$ a set of variables. As usual, $T_{\Gamma}(X_n)$, $T_{\Gamma}^{\infty}(X_n)$ stand for the sets of finite, infinite trees respectively over Γ and X_n .

A non-deterministic rational program scheme (NRPS) is a system $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$ where Γ, X_n are as above, x_1 is the starting variable and Σ is a system of equations of the form

$$x_i = L_i, \quad 1 \le i \le n$$

with L_1, \ldots, L_n finite subsets of $T_{\Gamma}(X_n)$.

The syntactic ∞ -tree languages defined by P are the x_1 -component of the greatest OI-solution of the above system. Such languages can also be obtained as ∞ -behaviours of top down tree automata using the D3-acceptance mode in the terminology of [NS].

Notice that the NRPS's and the rational logic programs of Kowalski (cf. [Ko]) are syntactically equivalent objects (cf. [NS]).

Two kinds of results are established:

Decision problems.

1. For a given syntactic language \mathcal{F} we can decide whether \mathcal{F} is finite or not. If it is finite, then \mathcal{F} consists exclusively of regular trees.

- 2. Given a syntactic language $\mathcal{F} \subseteq T_{\Gamma}^{\infty}$ and a regular infinite tree R, we van decide whether or not $R \in \mathcal{F}$.
- Closure properties.
 - 3. The class $STL(\Gamma)$ of syntactic tree languages over the alphabet Γ , is the smallest class containing the finite sets of finite trees and closed under OI-substitution and OI-STAR.
 - 4. $STL(\Gamma)$ is closed under linear tree homomorphisms and inverse alphabetic tree homomorphisms.
 - 5. The branches of a syntactic tree language, form a syntactic language, as well.

The techniques displayed to achieve the previous results are also valid for the case of Büchi tree automata. Hence the statements 1) - 5) above hold for Büchi tree languages also.

An excellent survey on infinite trees can be found in [Th].

2 PRELIMINARIES

Let $\Gamma = \bigcup_{k \ge 0} \Gamma_k$ be a ranked alphabet and $X = \{x_1, x_2, \ldots\}$ a set of variables. We put $X_n = \{x_1, \ldots, x_n\}, X_0 = \emptyset$. Also let Ω be a 0-ranked symbol and set

 $\mathbb{N}_0 = \{1, 2, \dots, k_n\}, \mathbb{N}_0 = \emptyset. \text{ This let } D \in \mathbb{C} \text{ transfer symbol and set}$

A tree is a partial function $T : \mathbb{N}_0^* \to \Gamma \cup \{\Omega\} \cup X_n$ whose domain is prefix closed and has the additional properties:

- for $a \in \mathbb{N}_0^*$, if $T(a) \in \Gamma_0 \cup \{\Omega\} \cup X_n$ then T(ai) is not defined for all $i \in \mathbb{N}_0$.

- for $a \in \mathbb{N}_0^*$, if $T(a) \in \Gamma_k$ $(k \ge 1)$ then T(ai) is defined iff $1 \le i \le k$.

Denote by $T^{\infty}_{\Gamma,\Omega}(X_n)$ the so obtained set and by $T_{\Gamma,\Omega}(X_n)$ the set of all trees with finite domain. For $T, T' \in T^{\infty}_{\Gamma,\Omega}(X_n)$ we write $T \leq_{\Omega} T'$ whenever $Dom(T) \subseteq Dom(T')$ and for any $a \in Dom(T)$ such that $T(a) \neq \Omega$ we have T(a) = T'(a). $(T^{\infty}_{\Gamma,\Omega}(X_n), \leq_{\Omega})$ is an ω -complete set.

The basic operation on trees is substitution. Let $T \in T^{\infty}_{\Gamma,\Omega}(X_n)$ and put

$$V_i(T) = \{a \mid a \in \mathbb{N}_0^*, T(a) = x_i\}, 1 \le i \le n$$

be the set of all vertices of T labelled by x_i $(1 \le i \le n)$ and consider families $\vec{S}_i = (S_a^i)_{a \in V_i(T)}$ of trees in $T^{\infty}_{\Gamma,\Omega}(X_n)$ $(1 \le i \le n)$. Then

$$T\left[\overrightarrow{S}_{1}/x_{1},\ldots,\overrightarrow{S}_{n}/x_{n}\right]$$
 or just $T\left[\overrightarrow{S}_{1},\ldots,\overrightarrow{S}_{n}\right]$

is the tree whose domain is

$$(Dom(T) - V(T)) \cup \left(\bigcup_{\substack{a \in V_i(T)\\1 \le i \le n}} \alpha Dom(S_a^i)\right)$$

with $V(T) = \bigcup_{1 \le i \le n} V_i(T)$. Moreover for all $\beta \in \mathbb{N}_0^*$ we have

$$T\left[\overrightarrow{S}_{1},\ldots,\overrightarrow{S}_{n}\right](\beta) = T(\beta), \text{ if } \beta \in Dom(T) - V(T)$$
$$= S_{a}^{i}(\gamma), \text{ if } \beta = \alpha\gamma, \ \alpha \in V_{i}(T), \ \gamma \in Dom(S_{\alpha}).$$

Associativity holds for the above vectorial tree substitution. Now, given languages of infinite trees $\mathcal{L}, \mathcal{A}_1, \ldots, \mathcal{A}_n \subseteq T^{\infty}_{\Gamma,\Omega}(X_n)$ we define

$$\mathcal{L}\left[\mathcal{A}_{1},\ldots,\mathcal{A}_{n}\right]_{OI}=\left\{T\left[\overrightarrow{S}_{i},\ldots,\overrightarrow{S}_{n}\right]\mid T\in\mathcal{L}, \ \overrightarrow{S}_{i}\in\mathcal{A}_{i}^{V_{i}(T)}, \ 1\leq i\leq n\right\}.$$

A straightforward argument shows that

Proposition 1. OI-substitution of infinite tree languages is associative.

3 SYNTACTIC LANGUAGES

Let Γ be a finite ranked alphabet and $X_n = \{x_1, \ldots, x_n\}$ a set of variables and consider the system

$$(\Sigma) \quad x_i = L_i \ , \ L_i \subseteq T_{\Gamma}(X_n) \ , \ 1 \le i \le n.$$

We say that $(\mathcal{A}_1, \ldots, \mathcal{A}_n) \in \mathcal{P}(T^{\infty}_{\Gamma})^n$ is an *OI-solution* of (Σ) whenever

$$\mathcal{A}_i = L_i \left[\mathcal{A}_1, \dots, \mathcal{A}_n \right]_{OI} \quad , \ 1 \le i \le n.$$

We say that the sequence $\mathbf{t} = (t_k)$ of trees in $T_{\Gamma}(X_n)$ is an x_i -th OI-expansion of (Σ) whenever

$$t_0 \in L_i, t_{k+1} \in t_k [L_1, \dots, L_n]_{OI}.$$

 $EXP_{OI}(\Sigma, x_i)$ stands for the so defined set.

We put

$$\mathbf{t}_{\varOmega} = (t_{k,\varOmega})$$

where $t_{k,\Omega} = t_k [\Omega/x_1, \ldots, \Omega/x_n]$. \mathbf{t}_{Ω} is an increasing sequence in $T^{\infty}_{\Gamma,\Omega}$ and thus $\sup \mathbf{t}_{\Omega}$ exists and is denoted by $\hat{\mathbf{t}}$, i.e.

$$\mathbf{t} = \sup \mathbf{t}_{\Omega}.$$

Theorem 1. The n-tuple

(s)
$$(\mathcal{F}(\Sigma, x_1), \dots, \mathcal{F}(\Sigma, x_n)) \in \mathcal{P}(T^{\infty}_{\Gamma})^n$$
,

where $\mathcal{F}(\Sigma, x_i) = \left\{ \widehat{\mathbf{t}} \mid \mathbf{t} \in EXP_{OI}(\Sigma, x_i) \right\}$ is the greatest, by inclusion, OI-solution of (Σ) .

A non deterministic rational program scheme (NRPS) is a 4-tuple $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$, where Γ, X_n are as above, (Σ) is a system whose all right-hand side members are finite subsets of $T_{\Gamma}(X_n)$ and x_1 is the starting variable. The language computed by P is the first component of the greatest OI-solution of (Σ) .

We say that $F \subseteq T_{\Gamma}^{\infty}$ is a *syntactic* language whenever it is computed by a NRPS P. $STL(\Gamma)$ denotes the class of syntactic languages over Γ .

Example 1. The whole T_{Γ}^{∞} is a syntactic language since it is the greatest OI-solution of the equation

$$x = \{f(x, \dots, x) \mid f \in \Gamma_k, k \ge 0\}.$$

The presence of variables in the right-hand side members of a system does not affect the formalization of its maximal solution. Indeed, for a given system

$$(\Sigma) \quad x_i = L_i \quad , \quad 1 \le i \le n$$

with L_1, \ldots, L_n finite subsets of $T_{\Gamma}(X_n)$, let us write $i \to j$ whenever $x_j \in L_i$. Then

Lemma 1. The systems (Σ) above and

$$(\Sigma') \quad x_i = (L_i - X_n) \cup \left(\bigcup_{\substack{i \stackrel{k}{\to} j}} (L_j - X_n)\right)$$

have the same greatest OI-solution.

The NRPS's $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$ and $P' = \langle \Gamma, X_m, \Sigma', x_1 \rangle$ are said to be equivalent whenever they compute the same language: $\mathcal{F}(\Sigma, x_1) = \mathcal{F}(\Sigma', x_1)$.

Proposition 2. Given a NRPS $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$ we can effectively construct an equivalent $P' = \langle \Gamma, X_m, \Sigma', x_1 \rangle$ satisfying the condition

$$L'_j \subseteq T_\Gamma(X_m) - X_m$$
, $j = 1, \dots, m$.

The graph associated with a system

$$(\Sigma)$$
 $x_i = L_i$, $L_i \subseteq T_{\Gamma}(X_n)$, $1 \le i \le n$

denoted by $Gr(\Sigma)$ has $X_n \cup \{\#\}$ as set of vertices while we draw an edge $x_i \to x_j$ (resp. $x_i \to \#$) whenever there is a tree $t \in L_i$ in which the variable x_i occurs (resp. $t \in L_i \cap T_{\Gamma}$). It is not hard to see that the language computed by $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$ is non-empty if and only if

(c)
$$\begin{cases} \text{for every path} \\ x_1 \to x_{i_1} \to \dots \to x_{i_p} \to x_i \\ \text{in } Gr(\Sigma) \text{ with } i_1, \dots, i_p, i \text{ distinct elements of} \\ \{2, 3, \dots, n\} \text{ it holds } L_i \neq \emptyset. \end{cases}$$

From now on, without any loss of generality, we may deal with NRPS $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$ whose corresponding system

$$(\Sigma) \quad x_i = L_i \quad , \quad 1 \le i \le n$$

is such that

i) L_1, \ldots, L_n are finite subsets of $T_{\Gamma}(X_n) - X_n$ and ii) the condition (c) above is satisfied.

Call $P = \langle \Gamma, X_n, \Sigma, x_1 \rangle$ deterministic whenever all right-hand side members of (Σ) are singletons

$$(\Sigma) \quad x_i = t_i \quad , \quad t_i \in T_{\Gamma}(X_n) - X_n \quad , \quad 1 \le i \le n \; .$$

For each i = 1, ..., n there is just one x_i -th OI-expansion, namely

$$\mathbf{s}^{i} = (s_{k}^{i})$$
, $s_{0}^{i} = t_{i}$, $s_{k+1}^{i} = t_{i}[s_{k}^{1}, \dots, s_{k}^{n}]$.

Therefore $(\{\widehat{\mathbf{s}}^1\}, \ldots, \{\widehat{\mathbf{s}}^n\})$ is the greatest by inclusion OI-solution of (Σ) where $(\widehat{\mathbf{s}}^1, \ldots, \widehat{\mathbf{s}}^n)$ is the least with respect to \leq_{Ω} -solution of (Σ) .

We conclude

Proposition 3. If $T \in T^{\omega}_{\Gamma}$ is a regular infinite tree, then the singleton $\{T\}$ is a syntactic language.

Proposition 4. Every non-empty syntactic language of T_{Γ}^{ω} contains at least one infinite regular tree.

Theorem 2. A finite subset $\mathcal{F} = \{T_1, \ldots, T_k\}$ of T_{Γ}^{∞} is syntactic if and only if all the trees T_1, \ldots, T_k are regular.

Proposition 5. The finiteness problem for syntactic languages is decidable.

4 KLEENE THEOREM

Let $\mathcal{A} \subseteq T^{\infty}_{\Gamma}(X_n)$. The greatest ∞ -OI-solution of the equation $x_{\kappa} = \mathcal{A}$ is denoted by $\mathcal{A}^{*,OI,\kappa}$ and is the greatest (by inclusion) part of $T^{\infty}_{\Gamma}(X_n - \{x_{\kappa}\})$ such that

$$\mathcal{A}^{*,OI,\kappa} = \mathcal{A}\left[x_1, \dots, x_{\kappa-1}, \mathcal{A}^{*,OI,\kappa}, x_{\kappa+1}, \dots, x_n\right]_{OI}$$

Next theorem confirms that the greatest solution of a system can be obtained by solving the system step by step.

Theorem 3. Consider the system

$$(\Sigma_n) \qquad \begin{cases} x_1 = \mathcal{A}_1 \\ \vdots \\ x_n = \mathcal{A}_n \end{cases} , \quad \mathcal{A}_i \subseteq T^{\infty}_{\Gamma}(X_n) \quad , \quad 1 \le i \le n.$$

If $\mathcal{A}_n^{*,OI,n}$ is the greatest ∞ -OI-solution of the last equation and $(\mathcal{F}_1, \ldots, \mathcal{F}_{n-1})$ is the greatest ∞ -OI-solution of the system

$$(\Sigma_{n-1}) \begin{cases} x_1 = \mathcal{A}_1 \left[x_1, \dots, x_{n-1}, \mathcal{A}_n^{*,OI,n} \right]_{OI} \\ \vdots \\ x_{n-1} = \mathcal{A}_{n-1} \left[x_1, \dots, x_{n-1}, \mathcal{A}_n^{*,OI,n} \right]_{OI} \end{cases}$$

then

(s)
$$(\mathcal{F}_1, \dots, \mathcal{F}_{n-1}, \mathcal{A}_n^{*,OI,n} [\mathcal{F}_1, \dots, \mathcal{F}_{n-1}]_{OI})$$

is the greatest OI-solution of (Σ_n) .

Next closure properties come by applying the above elimination procedure.

Theorem 4. Suppose $\mathcal{A}, \mathcal{A}_1, \ldots, \mathcal{A}_n \in STL(\Gamma)$. Then $\mathcal{A}[\mathcal{A}_1, \ldots, \mathcal{A}_n]_{OI} \in STL(\Gamma)$.

The main result of this section is next Kleene-like theorem.

Theorem 5. $STL(\Gamma)$ is the least class of $\mathcal{P}(T_{\Gamma}^{\infty})$ containing finite languages of T_{Γ} and closed under OI-substitution and OI-star-operation.

Corollary 1. Consider the system

$$(\Sigma)$$
 $x_i = \mathcal{L}_i$, $\mathcal{L}_i \subseteq T^{\infty}_{\Gamma}(X_n)$, $1 \le i \le n$

and its OI-greatest solution $(\mathcal{F}_1, \ldots, \mathcal{F}_n)$. If $\mathcal{L}_1, \ldots, \mathcal{L}_n$ are syntactic languages, then so are $\mathcal{F}_1, \ldots, \mathcal{F}_n$.

TREE HOMOMORPHISMS AND SYNTACTIC $\mathbf{5}$ LANGUAGES

First recall that for two given ranked alphabets Γ and Δ a homomorphism from Γ to Δ is simply a sequence of functions

$$h_{\kappa}: \Gamma_{\kappa} \to T_{\Delta}(\xi_1, \dots, \xi_{\kappa}) \quad , \quad \kappa = 0, 1, \dots$$

where $\Xi = \{\xi_1, \xi_2, \ldots\}$ is a set of auxiliary variables, $\Xi_{\kappa} = \{\xi_1, \ldots, \xi_{\kappa}\}, \kappa \ge 0$. The above sequence $(h_{\kappa})_{\kappa\geq 0}$ gives rise to a single function

$$h: T_{\Gamma}(X_n) \to T_{\Delta}(X_n) , \ X_n = \{x_1, \dots, x_n\}$$

defined by the inductive formula

-
$$h(x_i) = x_i$$
, $1 \le i \le n$

-
$$h(c) = h_0(c)$$
 , $c \in I$

- $h(c) = h_0(c)$, $c \in \Gamma_0$ - $h(f(t_1, \dots, t_{\kappa})) = h_{\kappa}(f) [h(t_1)/\xi_1, \dots, h(t_{\kappa})/\xi_{\kappa}], f \in \Gamma_{\kappa}, t_i \in T_{\Gamma}(X_n), 1 \le 1$ $i \leq \kappa$.

A homomorphism h from Γ to Δ is said to be *linear* whenever for all $\kappa \geq 1$ and $f \in \Gamma_{\kappa}$ the tree $h_{\kappa}(f)$ is Ξ_{κ} -linear (i.e. each variable ξ_i occurs in $h_{\kappa}(f)$ at most once).

Every tree homomorphism $h: T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ preserves tree substitution, that is

$$h(t[s_1,...,s_n]) = h(t)[h(s_1),...,(s_n)]$$

for all $t, s_1, \ldots, s_n \in T_{\Gamma}(X_n)$, where the above substitutions take place at the variables x_1, \ldots, x_n .

We can extend $h: T_{\Gamma}(X_n) \to T_{\Delta}(X_n)$ to $h: T^{\infty}_{\Gamma,\Omega}(X_n) \to T^{\infty}_{\Delta,\Omega}(X_n)$ by setting

$$h(T) = \sup_{t \le T} (t), \ T \in T^{\infty}_{\Gamma,\Omega}(X_n)$$

where the above ordering is the syntactic tree ordering described in Section 2.

Theorem 6. If $h: T^{\infty}_{\Gamma,\Omega}(X_n) \to T^{\infty}_{\Delta,\Omega}(X_n)$ is a linear tree homomorphism and $(\mathcal{F}_1,\ldots,\mathcal{F}_n)$ is the greatest OI-solution of the system

$$(\Sigma)$$
 $x_i = L_i$, $L_i \subseteq T_{\Gamma}(X_n)$, $1 \le i \le n$

then $(h(\mathcal{F}_1), \ldots, h(\mathcal{F}_n))$ is the greatest OI-solution of the system

$$(h\Sigma)$$
 $x_i = h(L_i)$, $1 \le i \le n$.

Consequently,

$$\mathcal{F} \in STL(\Gamma) \text{ implies } h(\mathcal{F}) \in STL(\Delta).$$

In the next section we shall display an example of a non-linear homomorphism not preserving syntactic languages.

Actually, syntactic languages are closed under the branching operator. Recall that the branching alphabet $b(\Gamma)$ associated with a ranked alphabet Γ is the monadic alphabet

$$b(\Gamma)_0 = \Gamma_0, b(\Gamma)_1 = \{ [f, i] \mid f \in \Gamma_\kappa, \kappa \ge 1 \text{ and } i = 1, \dots, \kappa \}.$$

The mapping

$$br: T_{\Gamma}(X_n) \to \mathcal{P}\left(T_{b(\Gamma)}(X_n)\right)$$

is defined by

- $br(a) = \{a\}, a \in \Gamma_0 \cup X_n$ - $br(f(t_1, \ldots, t_{\kappa})) = [f, 1]br(t_1) \cup \cdots \cup [f, \kappa]br(t_{\kappa}).$ We state

Theorem 7. If $(\mathcal{F}_1, \ldots, \mathcal{F}_n)$ is the greatest OI-solution of

 (Σ) $x_i = L_i, \quad L_i \subseteq T_{\Gamma}(X_n), 1 \le i \le n$

then $(br(\mathcal{F}_1),\ldots,br(\mathcal{F}_n))$ is the greatest solution of the system

 $br(\Sigma)$ $x_i = br(L_i)$, $1 \le i \le n$.

Consequently, if $T \in T^{\omega}_{\Gamma}$ is an infinite regular tree, then br(T) is a syntactic language of $T^{\infty}_{b(\Gamma)}$.

Corollary 2. We can decide whether or not a regular tree $T \in T^{\infty}_{\Gamma}$ is finite or not (provided Γ has no 1-ranked symbols, $\Gamma_1 = \emptyset$).

Theorem 8. Inverse linear alphabetic homomorphisms preserve ∞ -OI-regular languages.

6 OI-RECOGNIZABILITY

In this section we shall relate syntactic languages with infinite behaviours of tree automata.

A top-down tree automaton over the ranked alphabet Γ is a 4-tuple

$$\mathcal{M} = (\Gamma, Q, I, \delta)$$

consisting of a finite ranked alphabet Γ of input symbols, a finite set Q of states, a set $I \subseteq Q$ of initial states and a finite set

$$\delta \subseteq \bigcup_{\kappa \ge 0} Q \times \Gamma_{\kappa} \times Q^{\kappa}$$

of transitions.

The behaviour of \mathcal{M} is

 $|\mathcal{M}| = \bigcup_{q \in I} F_q$

where $(F_q)_{q \in Q}$ is the least OI-solution of the system

$$\Sigma(\mathcal{M}) \qquad x_q = \left\{ f\left(x_{q_1}, \dots, x_{q_\kappa}\right) \mid (q, f, q_1, \dots, q_\kappa) \in \delta \right\}.$$

The behaviours of such automata coincide with the class of recognizable tree languages (cf. [GS]).

The ∞ -OI-behaviour of a top-down automaton \mathcal{M} is

$$|\mathcal{M}|^{\infty,OI} = \bigcup_{q \in I} \mathcal{F}\left(\varSigma(\mathcal{M}), x_q\right)$$

where $\left(\mathcal{F}(\mathcal{D}(\mathcal{M}), x_q)_{q \in Q}\right)$ is the greatest OI-solution of $\mathcal{D}(\mathcal{M})$. $\mathcal{F} \subseteq T_{\Gamma}^{\infty}$ is said to be ∞ -OI-recognizable if it is the ∞ -OI-behaviour of a top-down tree automaton \mathcal{M} ; ∞ -OI-Rec(Γ) stands for the so defined class.

Proposition 6. The classes $STL(\Gamma)$ and $\infty - OI - Rec(\Gamma)$ coincide.

Actually the above proposition states that a language is syntactic if and only if it is D3-recognizable in the terminology of [Sa], [NS].

Hence,

Corollary 3. (cf. [Sa], [NS]) The syntactic subsets of T_{Γ}^{∞} are closed under intersection.

In order to render more apparent the use of tree runs in the formation of ∞ -OI-behaviour of a top-down tree automaton $\mathcal{M} = (\Gamma, Q, I, \delta)$ we introduce the ranked alphabet $\mathbf{Q}, \mathbf{Q}_n = Q$ for $n \geq 0$, as well as the product alphabet

$$\Gamma \times \mathbf{Q}, (\Gamma \times \mathbf{Q})_n = \Gamma_n \times \mathbf{Q}_n, n \ge 0.$$

Denote by $(loc(\mathcal{M})_{<\gamma,q>})_{<\gamma,q>\in\Gamma\times Q}$ the greatest ∞ -OI-solution of the system

$$x_{\langle\gamma,q\rangle} = \left\{ \langle\gamma,q\rangle \left(x_{\langle\gamma_1,q_{i_1}\rangle},\ldots,x_{\langle\gamma_{\kappa},q_{i_{\kappa}}\rangle}\right) \mid (q,\gamma,q_{i_1},\ldots,q_{i_{\kappa}}) \in \delta \right\},\$$

 $\langle \gamma, q \rangle \in \Gamma \times \mathbf{Q}$, and set

$$loc(\mathcal{M}) = \bigcup_{\langle \gamma, q \rangle \in \Gamma \times I} loc(\mathcal{M})_{\langle \gamma, q \rangle}.$$

 $loc(\mathcal{M})$ is the local language defined by \mathcal{M} .

The composition

$$T_{\Gamma}^{\infty} \stackrel{pr_{\Gamma}}{\leftarrow} T_{\Gamma_{x}}^{\infty} \stackrel{-\cap loc(\mathcal{M})}{\longrightarrow} T_{\Gamma \times \mathbf{Q}}^{\infty} \stackrel{pr_{\mathbf{Q}}}{\longrightarrow} T_{\mathbf{Q}}^{\infty}$$

is by definition the relation $\xrightarrow{run_{\mathcal{M}}}$; for $T \in T_{\Gamma}^{\infty}$,

$$run_{\mathcal{M}}(T) = pr_{\mathbf{Q}}\left(pr_{\Gamma}^{-1}(T) \cap loc(\mathcal{M})\right).$$

It is easily seen that

$$\left|\mathcal{M}\right|^{\infty,OI} = \left\{T \mid run_{\mathcal{M}}(T) \neq \emptyset\right\}.$$

Proposition 7. For a given top-down automaton \mathcal{M} the language $run_{\mathcal{M}}\left(|\mathcal{M}|^{\infty,OI}\right) \subseteq$ $T^{\infty}_{\mathbf{Q}}$ is syntactic.

Also, for any infinite regular tree $T \in |\mathcal{M}|^{\omega,OI}$, $run_{\mathcal{M}}(T)$ is a syntactic language of $T^{\infty}_{\mathbf{Q}}$.

Corollary 4. Given a syntactic language $\mathcal{F} \subseteq T^{\infty}_{\Gamma}$ and a regular tree $T \in T^{\omega}_{\Gamma}$, we can decide whether $T \in \mathcal{F}$ or not.

A useful pumping lemma can be obtained in this setup. We denote by P_{Γ}^{∞} the free monoid generated by the trees

 $f(T_1, \ldots, T_{i-1}, x, T_{i+1}, \ldots, T_p), f \in \Gamma_p, p \ge 1, T_i \in T_{\Gamma}^{\infty}, j \ne i.$

Clearly P_{Γ}^{∞} acts on T_{Γ}^{∞} via substitution at x.

Lemma 2. For every syntactic language $\mathcal{F} \subseteq T^{\infty}_{\Gamma}$, there is a number N > 0 so that each $T\in \mathcal{F}\cap T^\omega_{\varGamma}$ admits a decomposition

$$T = S_1 \cdot S_2 \cdot T_1 \text{ such that } S_1, S_2 \in P_{\Gamma}^{\infty}, T_1 \in T_{\Gamma}^{\omega}, |S_2| > 0 \text{ and}$$
$$S_1 (S_2)^{\kappa} T_1, S_1 \cdot S_2^{\omega} \in \mathcal{F}, \kappa = 0, 1, \dots$$

We shall apply this lemma to show non-closure of syntactic languages under non-linear tree homomorphisms.

Example 2. Consider the ranked alphabets $\Gamma = \{f, g\}$ and $\Gamma_1 = \{f_1, g_1\}$ with rank(f) = 2 = rank(g) and $rank(f_1) = 1 = rank(g_1)$ respectively. Let $h: T^{\infty}_{\Gamma_1} \to T^{\infty}_{\Gamma}$ be the homomorphism defined by

$$h(f_1) = f(x, x), h(g_1) = g(x, x)$$

and take $\mathcal{F} = h\left(T^{\infty}_{\Gamma_1}\right)$ and T = h(W) with

$$W = f_1 g_1 f_1^2 g_1^2 f_1^3 g_1^3 \dots$$

If \mathcal{F} was syntactic then by virtue of the pumping lemma above

$$T = S_1 \cdot S_2 \cdot T_1$$

with $|S_2| > 0$ and $S_1(S_2)^{\kappa} T_1 \in \mathcal{F}$ for $\kappa = 0, 1, \dots$. But for κ large enough this is not true.

7 Büchi ∞ -TREE LANGUAGES

A Büchi tree automaton is a system $\mathcal{M} = (\Gamma, Q, \delta, q_0, F)$ where (Γ, Q, δ, q_0) is a top-down tree automaton and $F \subseteq Q$ is the set of final states of \mathcal{M} .

The behaviour of \mathcal{M} , denotes by $|\mathcal{M}|^{B\ddot{u}chi}$, consists of all trees $T \in T^{\infty}_{\Gamma}$ such that there is a run $R \in run_{\mathcal{M}}(T)$ such that in every branch W of R there appear infinitely many final states.

 $\mathcal{F} \subseteq T_{\Gamma}^{\infty}$ is a *Büchi language* whenever $\mathcal{F} = |\mathcal{M}|^{Büchi}$ for some automaton \mathcal{M} .

It is well known that

Theorem 9. (cf. [Ta], [AN4]) $\mathcal{F} \subseteq T_{\Gamma}^{\infty}$ is a Büchi language iff it is the first component of the maximal OI-solution of a system

$$(\Sigma) \quad x_i = L_i, \ 1 \le i \le n$$

with L_1, \ldots, L_n recognizable subsets of $T_{\Gamma}(X_n)$.

Given a system

$$(\Sigma_r)$$
 $x_i = L_i$, $1 \le i \le n$

with L_1, \ldots, L_n recognizable subsets of $T_{\Gamma}(X_n) - X_n$, we can effectively construct a finite graph $Gr(\Sigma_r)$ by taking $X_n \cup \{\#\}$ as its set of vertices while we draw an edge $x_i \to x_j$ (resp. $x_i \to \#$) whenever x_j occurs in a tree $t \in L_i$ (resp. $L_i \cap T_{\Gamma}(X_n) \neq \emptyset$).

Since L_i is recognizable, it is decidable whether the set

$$L_i x_i^{-1} = \{ \tau \mid \tau \in P_{\Gamma}(X_n), \tau x_j \in L_i \}$$

is empty or not.

We have the following important result:

Theorem 10. We can decide whether a given Büchi tree language is finite or not.

Theorem 11. Büchi-tree languages are closed under linear tree homomorhisms and inverse alphabetic homomorphisms.

Proposition 8. If $\mathcal{F} \subseteq T_{\Gamma}^{\infty}$ is a Büchi language then so is $br(\mathcal{F}) \subseteq T_{b(\Gamma)}^{\infty}$.

Let $\mathcal{M} = (\Gamma, Q, \delta, q_0, F)$ be a Büchi tree automaton and consider the top down automaton

$$\widehat{\mathcal{M}}_q = (\Gamma \cup X_F, Q, \widehat{\delta}, q), q \in Q$$

where $X_F = \{x_p \mid p \in F\}$ and $\widehat{\delta} = \delta \cup \{(x_p, p) \mid p \in F\}$. Also, let $loq(\widehat{\mathcal{M}}_q)$ be the local set associated with $\widehat{\mathcal{M}}_q$ and

$$(\widehat{\Sigma}) \quad \xi_q = loc(\widehat{\mathcal{M}}_q) \left[\xi_p / (x_p, p)\right]_{p \in F}.$$

We set

$$LOC(\mathcal{M}) = \mathcal{F}(\widehat{\Sigma}, \xi_{q_0})$$

Then $pr_{\Gamma}(LOC(\mathcal{M})) = |\mathcal{M}|^{B\ddot{u}chi}$ and the function

$$RUN_{\mathcal{M}}: T_{\Gamma}^{\infty} \to \mathcal{P}\left(T_{\mathbf{Q}}^{\infty}\right),$$

$$RUN_{\mathcal{M}}(T) = pr_{\mathbf{Q}}\left(pr_{\Gamma}^{-1}(T) \cap LOC(\mathcal{M})\right), T \in T_{\Gamma}^{\infty}$$

preserves Büchi tree languages. Since the non emptiness problem for Büchi tree languages is decidable, we get

Theorem 12. We can decide whether or not a regular tree $T \in T_{\Gamma}^{\infty}$ belongs to a Büchi language $\mathcal{F} \subseteq T_{\Gamma}^{\infty}$.

References

- [AD] Arnold, A. Dauchet, M., Forêts Algébriques et Homomorphismes Inverses, Information and Control, Vol.37., No 2, 1978, 182-196
- [ANN] Arnold, A., Naudin, P., Nivat, M., On Semantics of Non-Deterministic Recursive Program Schemes, in Algebraic Methods in Semantics, Nivat and Reynolds Eds., Cambridge University Press.
- [AN1] Arnold, A., Nivat, M., Non deterministic recursive programs, in Fundamentals of Computation Theory, 12-21, Lecture Notes in Computer Science, No 56, Springer-Verlag, Heidelberg, 1977.
- [AN2] Arnold, A., Nivat, M., Formal Computations of Non-Deterministic Recursive Program Schemes, Math. System Theory, vol 13, 1980, 219-236
- [AN3] Arnold, A., Nivat, M., Metric Interpretations of Infinite Trees and Semantics of Non-Deterministic Recursive Program Schemes, TCS, vol 11, 1980, 181-205.
- [AN4] Arnold, A., Niwinski, D., Fixed Point Characterization of Büchi Automata on Infinite Trees, J. Inf. Process Cybern. EIK 26, 1990, 451-459
- [ES] Engelfriet, J., Schmidt, E.-M., IO and OI, I,J. Comput. System Sci. 15, 1998
- [GS] Giesceg, F., Steinby, M., Tree Automata, Akademiai Kiado, Budapest, 1984
- [Ko] Kowalski, R., Algorithm = Logic+Control, Communications of the ACM, Vol.22., No 7, 1979, 424-436
- [Na] Naudin, P., Comparison et Equivalence de Semantiques pour les schémas de Programmes non déterministes, Informatique théorique et Applications, vol 21, no 1, 1987, 59-91.
- [NS] Nivat, M., Saoudi, A., Automata on Infinite Objects and their Applications to Logic and Programming, Information and Computation 83, 1989, 41-64
- [Po] Poigné, A., Effective Computations of Non-Deterministic Schemes, Lecture Notes in Computer Science, vol. 137, 1982.
- [Sa] Saoudi, A., Generalized Automata on Infinite Trees and Muller-McNaughton's Theorem, Theoret. Comput. Sci. 84, 1991,165-177
- [Ta] Takahashi, M., The Greatest Fixed-points and Rational Omega Tree Languages, Theoret. Comput. Sci. 44, 1986, 259-274
- [Th] Thomas, W., Automata on Infinite Objects, Handbook of Theoretical Computer Science, Vol.B, Elsevier, 1990, 133-191