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Abstract. The class of languages obtained by solving non-deterministic
rational program schemes is shown to be closed under linear tree homo-
morphisms and inverse alphabetic tree homomorphisms. Moreover, for
a given such language F and an infinite regular tree R we can decide
whether or not F is finite and R € F. These results are also valid for
Buchi tree languages.

1 INTRODUCTION

In 1977 Arnold and Nivat [AN1] showed that the set of trees computed by a
non-deterministic recursive program scheme (NRvePS) is just a component of
the greatest solution of the monotonic operator canonically associated with this
scheme. The various semantics of such schemes have been investigated in a series
of papers (cf. [Na], [ANN], [Po], [AN2], [AN3]). Here we try a linguistic study
of languages of infinite trees determined by non-deterministic rational program
schemes which are the first order variant of NRvePS’s above.

Let I' be a ranked alphabet and X,, = {z1,...,z,} a set of variables. As
usual, Tr (X,,), T5° (X,,) stand for the sets of finite, infinite trees respectively
over I' and X,,.

A non-deterministic rational program scheme (NRPS) is a system P =
(I, X, X, x1) where I', X,, are as above, x; is the starting variable and X is
a system of equations of the form

xi:Li, ISZSH

with L, ..., L, finite subsets of T (X,,).

The syntactic co-tree languages defined by P are the zj-component of the
greatest Ol-solution of the above system. Such languages can also be obtained
as oo-behaviours of top down tree automata using the D3-acceptance mode in
the terminology of [NS].

Notice that the NRPS’s and the rational logic programs of Kowalski (cf. [Ko])
are syntactically equivalent objects (cf. [NS]).

Two kinds of results are established:

— Decision problems.
1. For a given syntactic language F we can decide whether F is finite or
not. If it is finite, then F consists exclusively of regular trees.
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2. Given a syntactic language 7 C Tp° and a regular infinite tree R, we

van decide whether or not R € F.
— Closure properties.

3. The class ST L(I") of syntactic tree languages over the alphabet I', is the
smallest class containing the finite sets of finite trees and closed under
Ol-substitution and OI-STAR.

4. STL(I") is closed under linear tree homomorphisms and inverse alpha-
betic tree homomorphisms.

5. The branches of a syntactic tree language, form a syntactic language, as
well.

The techniques displayed to achieve the previous results are also valid for the
case of Biichi tree automata. Hence the statements 1) - 5) above hold for Biichi
tree languages also.

An excellent survey on infinite trees can be found in [Th].

2 PRELIMINARIES

Let I' = | I'x be a ranked alphabet and X = {z1,x2,...} a set of variables.

k>0
We put X,, = {z1,...,2,}, Xo = @. Also let 2 be a 0-ranked symbol and set
No ={1,2,...}.

A tree is a partial function T : N§ — I' U {2} U X,, whose domain is prefix
closed and has the additional properties:

- for a € N§, if T'(a) € IoU{$2} U X,, then T'(ai) is not defined for all i € Ny.

- for a € N§, if T'(a) € I, (k> 1) then T'(ai) is defined iff 1 < i < k.

Denote by Tp%,(X,) the so obtained set and by Tr o(X,) the set of all
trees with finite domain. For T,T" € Tp%,(X,) we write T' <o T" whenever
Dom(T) € Dom(T’) and for any a € Dom(T) such that T(a) # {2 we have
T(a) =T'(a). (TF,(Xn), <n) is an w-complete set.

The basic operation on trees is substitution. Let 7" € T, (X,,) and put

Vil)={a|aeN;, T(a)=2;},1<i<n

be the set of all vertices of T labelled by z; (1 < i < n) and consider families
— )
S = (Sa)acvi(r) of trees in TR, (X,,) (1 <i < n). Then

— — . — —
T Sl/ml,...,Sn/xn] orJustT[Sl,...7Sn]
is the tree whose domain is

(Dom (T) =V (T)u | |J aDom(si)

aeVi(T)
1<i<n
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with V(T)= |J V;(T). Moreover for all 5 € Njj we have

T {51, o ?n] (8) = T(B), it € Dom(T) — V(T)
=S5 (v),if B=ay, a € Vi(T), v € Dom(S,).

Associativity holds for the above vectorial tree substitution.
Now, given languages of infinite trees £, As, ..., A, C T (X,) we define

—

LI Aoy ={T [Si . S] I1TeL, Sie A 1<i<n}.

A straightforward argument shows that

Proposition 1. Ol-substitution of infinite tree languages is associative.

3 SYNTACTIC LANGUAGES

Let I" be a finite ranked alphabet and X,, = {z1,...,z,} a set of variables and
consider the system

We say that (A1, ..., A,) € P(T°)™ is an Ol-solution of (X)) whenever
AiZLi[Al,...,An]OI , 1 <1< n.

We say that the sequence t = (tx) of trees in Tr(X,,) is an x;-th OI-expansion
of (X') whenever
to € Li, tpe1 €t [L1, ..., Ln] o -

EXPor(X, x;) stands for the so defined set.
‘We put
to = (tr,0)

where ty, o =ty [2/71,...,£2/z,]. to is an increasing sequence in T7, and thus
suptg exists and is denoted by t, i.e.

t= suptp.

Theorem 1. The n-tuple
(8) (f(zaxl)v7f(2’xn)) EIP(TIQ‘O)n7

where F(X,x;) = {?| t e EXPOI(E,xi)} is the greatest, by inclusion, OI-

solution of (X).
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A non deterministic rational program scheme (NRPS) is a 4-tuple P =
(I, X, X, x1), where I') X,, are as above, (X)) is a system whose all right-hand
side members are finite subsets of Tr(X,,) and x; is the starting variable. The
language computed by P is the first component of the greatest OlI-solution of
().

We say that F' C T7° is a syntactic language whenever it is computed by a
NRPS P. STL (I') denotes the class of syntactic languages over I

Example 1. The whole T7° is a syntactic language since it is the greatest
Ol-solution of the equation

v ={f(@,....0) | f € Dok =0},

The presence of variables in the right-hand side members of a system does
not affect the formalization of its maximal solution. Indeed, for a given system

() =L , 1<i<n

with Lq,..., L, finite subsets of Tr(X,,), let us write i — j whenever x; € L;.
Then

Lemma 1. The systems (X) above and

(X)) wi=(Li— X)) U | [ J(L; — Xn)

i5j
have the same greatest OI-solution.

The NRPS’s P = (I, X,,, X, 21) and P’ = (I, X;,, X', x1) are said to be
equivalent whenever they compute the same language: F(X,z1) = F(X', x1).

Proposition 2. Given a NRPS P = (I, X,,, X, 21) we can effectively construct
an equivalent P' = (I, X,,,, X', 1) satisfying the condition

L CTr(Xm) = X 5 j=1,...,m.
The graph associated with a system
(X) z=L; , L; CTr(X,) , 1<i<n
denoted by Gr(X) has X, U{#} as set of vertices while we draw an edge z; — x;

(resp. ®; — #) whenever there is a tree ¢ € L; in which the variable x; occurs
(resp. te L;N Tp)
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It is not hard to see that the language computed by P = (I, X,,, X, x1) is
non-empty if and only if
for every path
Tl — Ty H...Hmip — Ty
(c) in Gr(X) with ¢1,...,4,, 4 distinct elements of
{2,3,...,n} it holds L; # 0.

From now on, without any loss of generality, we may deal with NRPS P =
(I, X, X, x1) whose corresponding system

(2) z=L; , 1<i<n
is such that

i) Lq,..., L, are finite subsets of Tr(X,) — X,, and
ii) the condition (¢) above is satisfied.

Call P = (I, X,,, X, z1) deterministic whenever all right-hand side members
of (X) are singletons

(X) =t , t, €Tp(Xy)—X, , 1<i<n.
For each ¢ = 1,...,n there is just one x;-th Ol-expansion, namely
s' = (52) ) 86 =t , 52_‘_1 = ti[S]{:,...,SZ] .

Therefore ({8'},...,{8"}) is the greatest by inclusion Ol-solution of (X)) where

(§1, . ,§”) is the least with respect to <g-solution of (X).

‘We conclude

Proposition 3. If T € T{¥ is a reqular infinite tree, then the singleton {T'} is a
syntactic language.

Proposition 4. Every non-empty syntactic language of T} contains at least
one infinite reqular tree.

Theorem 2. A finite subset F = {T1,..., Ty} of T is syntactic if and only if
all the trees Ty, ..., Ty are reqular.

Proposition 5. The finiteness problem for syntactic languages is decidable.
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4 KLEENE THEOREM

Let A C T (X,,). The greatest co-Ol-solution of the equation z,, = A is denoted
by A*9T* and is the greatest (by inclusion) part of T8 (X,, — {x,}) such that

*,0OI,k __ *,01,k
A _Alimlw"axlith 7wn+17~-~axn]01-

Next theorem confirms that the greatest solution of a system can be obtained
by solving the system step by step.

Theorem 3. Consider the system

x1=A

(Zn) : . AC TR(X,) , 1<i<n.
‘rn:An

If A%OLn s the greatest co-Ol-solution of the last equation and (Fy,. .., Fn_1)
is the greatest co-OlI-solution of the system

T
xy=Ay w1, w1, AYO ’"}Ol

(anl)

— ,OI,
xn—l _A’I'L—l I:xl7'-'7$n—17A:L TL}OI

then
(s) (Fiyeo o, Frot, ACT [Fr o Fucil o)

is the greatest OI-solution of (Xy,).
Next closure properties come by applying the above elimination procedure.
Theorem 4. Suppose A, A1, ..., A, € STL(I'). Then A[A1, ..., Ay]o; € STL(I).
The main result of this section is next Kleene-like theorem.

Theorem 5. STL(I") is the least class of P(T5°) containing finite languages of
Tr and closed under OI-substitution and OI-star-operation.

Corollary 1. Consider the system

and its Ol-greatest solution (Fi,...,Fpn). If L1,..., L, are syntactic languages,
then so are Fi,...,Fn .
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5 TREE HOMOMORPHISMS AND SYNTACTIC
LANGUAGES

First recall that for two given ranked alphabets I" and A a homomorphism from
I' to A is simply a sequence of functions

he : T = Ta(&1,..,&) , k=0,1,..

where 5 = {£1,&,...} is a set of auxiliary variables, =, = {&1,...,&:},k > 0.
The above sequence (h).>0 gives rise to a single function

h:Tr(X,) = Ta(Xy) , Xn={21,...,2,}

defined by the inductive formula

- h(zy)=x; , 1<i<n

- h(e) =holc) , celp

- h(f(tla cee 7tn)) = hn(f) [h(tl)/flv s 7h(tn)/§m] 7f € Fmti € TF(Xn)’ 1<
1 < K.

A homomorphism A from I" to A is said to be linear whenever for all k > 1
and f € I, the tree h,(f) is Z,-linear (i.e. each variable & occurs in h,(f) at
most once).

Every tree homomorphism h : Tr(X,) — Ta(X,) preserves tree substitu-
tion, that is

h(t[s1,...,sn]) =h(t)[h(s1),...,(sn)]

for all ¢,s1,...,8, € Tr(X,), where the above substitutions take place at the
variables z1,...,Zy.

We can extend h : Tr(X,) — Ta(X,) to h : TE%(Xy) — TXo(Xa) by
setting

h(T) =sup(t), T € TIQ*?Q(X“)
t<T

where the above ordering is the syntactic tree ordering described in Section 2.

Theorem 6. If h: TR, (X,) — TX o(Xy) is a linear tree homomorphism and
(F1,...,Fn) is the greatest Ol-solution of the system

(X)) x=L , LiCTr(X,) , 1<i<n
then (h(F1),...,h(Fy,)) is the greatest OI-solution of the system
(hE) mz:h(LZ),lgzgn

Consequently,
F € STL(I") implies h(F) € STL(A).

In the next section we shall display an example of a non-linear homomorphism
not preserving syntactic languages.
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Actually, syntactic languages are closed under the branching operator. Recall
that the branching alphabet b(I") associated with a ranked alphabet I" is the
monadic alphabet

b(F)OZF(),b(F)lz{[f,i]‘fEFK,K,Zlandi:L...,H}.

The mapping
br: Tr(X,) — P (Tyry(Xn))

is defined by
-br(a) ={a}l,ac IhUX,
- br (f(ty, - b)) = [, 1br(t) U - - U [f, k]br(t).

We state
Theorem 7. If (Fi,...,F,) is the greatest Ol-solution of
(¥) w=1Li, L CTr(X,),1<i<n
then (br(F1),...,br(F,)) is the greatest solution of the system
br(X)  m=br(L) , 1<i<n.

Consequently, if T € T§ is an infinite reqular tree, then br(T') is a syntactic
language of Tf(op).

Corollary 2. We can decide whether or not a reqular tree T € T is finite or
not (provided I' has no 1-ranked symbols, I'1 = ().

Theorem 8. Inverse linear alphabetic homomorphisms preserve oo-Ol-regular
languages.

6 OI-RECOGNIZABILITY

In this section we shall relate syntactic languages with infinite behaviours of tree
automata.
A top-down tree automaton over the ranked alphabet I" is a 4-tuple

M:(Fanlaé)

consisting of a finite ranked alphabet I" of input symbols, a finite set () of states,
a set I C @ of initial states and a finite set

sCJoxTx@"
k>0

of transitions.

The behaviour of M is
M| = UF q

qel
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where (Fj)qeq is the least Ol-solution of the system
E(M) xq:{f(xqm"wan)‘(q7f7Q17"',qN)€6}-

The behaviours of such automata coincide with the class of recognizable tree
languages (cf. [GS]).
The oco-OI-behaviour of a top-down automaton M is

MO = F (M), )

q€l

where (]:(E(M),xq)qu> is the greatest Ol-solution of X(M). F C TP is
sald to be oco-Ol-recognizable if it is the oco-Ol-behaviour of a top-down tree
automaton M; co-OI-Rec(I") stands for the so defined class.

Proposition 6. The classes STL(I") and oo — OI — Rec(I") coincide.

Actually the above proposition states that a language is syntactic if and only
if it is D3-recognizable in the terminology of [Sa], [NS].
Hence,

Corollary 3. (cf. [Saf, [NS]) The syntactic subsets of TR are closed under
intersection.

In order to render more apparent the use of tree runs in the formation of
0o-OlI-behaviour of a top-down tree automaton M = (I',Q, I,d) we introduce
the ranked alphabet Q,Q,, = @ for n > 0, as well as the product alphabet

I'<xQ,(I'xQ)n=1,x%xQ,,n>0.

Denote by (loc(M)<y,q>) ., sserxq the greatest oo-Ol-solution of the system

T<y,g> = {< Y, q > (x<’y17qi1>, s ax<’qum>> ‘ (qar}/?qilv' . 'aQin) € 5} y

(v,q) € I' x Q, and set

locM) =[] loc(M)<r g

<7v,q>€I'xI

loc(M) is the local language defined by M.
The composition

Tpe 20 e TN o P8
is by definition the relation '—2&'; for T' € T,

run(T) = prq (prr'(T) Nloc(M)) .
It is easily seen that

(MO = (T | runp(T) # 0} .
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Proposition 7. For a given top-down automaton M the language run (|M\°°’OI) -

Tg s syntactic.

Also, for any infinite reqular tree T € |./\/l|w’OI

language of Tg .

, runp (T) is a syntactic
Corollary 4. Given a syntactic language F C T and o regular tree T € Tf,
we can decide whether T € F or not.

A useful pumping lemma can be obtained in this setup. We denote by Pp°
the free monoid generated by the trees

f(Tla--~7Ti717xaTi+17'"7Tp)7ferapZ 151—} ETIQ‘O?J#z

Clearly Pp° acts on T7° via substitution at x.

Lemma 2. For every syntactic language F C T7°, there is a number N > 0 so
that each T'€¢ F NTE admits a decomposition

T =515 T1 such that S1,55 € P, Ty € T{,[S2| >0 and

S (SQ)KT1751'S§J Gf,ﬁzo,l,...

We shall apply this lemma to show non-closure of syntactic languages under
non-linear tree homomorphisms.

Example 2. Consider the ranked alphabets I' = {f, g} and It = {f1,91}
with rank(f) = 2 = rank(g) and rank(f;) = 1 = rank(g1) respectively.
Let h: Tp) — TP° be the homomorphism defined by

h(f1) = f(z,x),h(g1) = g(z, 2)
and take F = h (T7) and T' = h(W) with
W= flglffgfff’gif e
If F was syntactic then by virtue of the pumping lemma above
T=5 -5 T

with |Sa] > 0 and S1(S2)"T) € F for k = 0,1,... . But for k large enough this
is not true.
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7 Biichi co-TREE LANGUAGES

A Biichi tree automaton is a system M = (I',Q, 0, qo, ') where (I',Q,0,q,) is a
top-down tree automaton and F' C ) is the set of final states of M.

The behaviour of M, denotes by |M|Z%"  consists of all trees T € TR such
that there is a run R € runaq(T) such that in every branch W of R there appear
infinitely many final states. o

F C T is a Biichi language whenever F = |M|®%" for some automaton
M.

It is well known that

Theorem 9. (cf. [Ta, [AN4]) F C TR is a Biichi language iff it is the first
component of the mazximal OI-solution of a system

with Ly, ..., L, recognizable subsets of Tr(X,).

Given a system

with L4, ..., L, recognizable subsets of T (X,,) — X,,, we can effectively construct
a finite graph Gr(X,) by taking X,, U {#} as its set of vertices while we draw
an edge ; — x; (resp. x; — #) whenever z; occurs in a tree ¢t € L; (resp.
L;NTr(X,) #0).

Since L; is recognizable, it is decidable whether the set

Lixj_l ={r|7€ Pr(X,),7x; € L;}

is empty or not.
We have the following important result:

Theorem 10. We can decide whether a given Biichi tree language is finite or
not.

Theorem 11. Biichi-tree languages are closed under linear tree homomorhisms
and inverse alphabetic homomorphisms.

Proposition 8. If F C T is a Biichi language then so is br(F) C T3y

Let M = (I,Q,0,q0, F) be a Biichi tree automaton and consider the top
down automaton - R
Mq = (FUXF,Q,(S,Q),QE Q

where Xp = {z, | p € F} and Széu{(xp,p) |peF}.

—

Also, let log(M,,) be the local set associated with M, and

(D) & =loc(My) [/ (@p, D) pep -

277



We set R
LOCM) = F(X,&q)-

Then prp (LOC(M)) = |M|P%" and the function
RUNpM : TP — P (TF)

RUNm(T) = prq (prr" (T) N LOC(M)) , T € T

preserves Biichi tree languages. Since the non emptiness problem for Biichi tree
languages is decidable, we get

Theorem 12. We can decide whether or not a reqular tree T' € T7° belongs to
a Biichi language F C TF°.
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